Abstract:
Solvability analysis of mixed boundary value problems for pseudoparabolic systems in a special scale of weighted Sobolev spaces is presented. The class under consideration contains the linearized Navier–Stokes system. It is proved that, choosing the power weight, one can diminish the number of solvability conditions and in some cases obtain unconditional solvability of the boundary value problems.
Citation:
G. V. Demidenko, I. I. Matveeva, “On mixed boundary value problems for pseudoparabolic systems”, Sib. Zh. Ind. Mat., 8:4 (2005), 34–50; J. Appl. Industr. Math., 1:1 (2007), 18–32
\Bibitem{DemMat05}
\by G.~V.~Demidenko, I.~I.~Matveeva
\paper On mixed boundary value problems for pseudoparabolic systems
\jour Sib. Zh. Ind. Mat.
\yr 2005
\vol 8
\issue 4
\pages 34--50
\mathnet{http://mi.mathnet.ru/sjim274}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2213909}
\zmath{https://zbmath.org/?q=an:1122.35062}
\transl
\jour J. Appl. Industr. Math.
\yr 2007
\vol 1
\issue 1
\pages 18--32
\crossref{https://doi.org/10.1134/S1990478907010036}
Linking options:
https://www.mathnet.ru/eng/sjim274
https://www.mathnet.ru/eng/sjim/v8/i4/p34
This publication is cited in the following 1 articles:
Marina V. Plekhanova, Guzel D. Baybulatova, Springer Proceedings in Mathematics & Statistics, 292, Nonlinear Analysis and Boundary Value Problems, 2019, 81