Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2024, Volume 27, Number 2, Pages 20–33
DOI: https://doi.org/10.33048/SIBJIM.2024.27.202
(Mi sjim1278)
 

Filtration of two immiscible incompressible fluids

P. V. Gilev, A. A. Papin

Altai State University, Barnaul, 656049 Russia
References:
Abstract: The paper considers a mathematical model of the filtration of two immiscible incompressible fluids in deformable porous media. This model is a generalization of the Musket—Leverett model, in which porosity is a function of the space coordinates. The model under study is based on the equations of conservation of mass of liquids and porous skeleton, Darcy's law for liquids, accounting for the motion of the porous skeleton, Laplace's formula for capillary pressure, and a Maxwell-type rheological equation for porosity and the equilibrium condition of the “system as a whole”. In the thin layer approximation, the original problem is reduced to the successive determination of the porosity of the solid skeleton and its speed, and then the elliptic-parabolic system for the “reduced” pressure and saturation of the fluid phase is derived. In view of the degeneracy of equations on the solution, the solution is understood in a weak sense. The proofs of the results are carried out in four stages: regularization of the problem, proof of the maximum principle, construction of Galerkin approximations, and passage to the limit in terms of the regularization parameters based on the compensated compactness principle.
Keywords: two-phase filtration, Darcy's law, saturation, poroelasticity, solvability.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FZMW-2024-0003
Received: 02.11.2023
Revised: 06.03.2024
Accepted: 17.04.2024
English version:
Journal of Applied and Industrial Mathematics, 2024, Volume 18, Issue 2, Pages 234–245
DOI: https://doi.org/10.1134/S1990478924020066
Document Type: Article
UDC: 517.95:532.64
Language: Russian
Citation: P. V. Gilev, A. A. Papin, “Filtration of two immiscible incompressible fluids”, Sib. Zh. Ind. Mat., 27:2 (2024), 20–33; J. Appl. Industr. Math., 18:2 (2024), 234–245
Citation in format AMSBIB
\Bibitem{GilPap24}
\by P.~V.~Gilev, A.~A.~Papin
\paper Filtration of two immiscible incompressible fluids
\jour Sib. Zh. Ind. Mat.
\yr 2024
\vol 27
\issue 2
\pages 20--33
\mathnet{http://mi.mathnet.ru/sjim1278}
\crossref{https://doi.org/10.33048/SIBJIM.2024.27.202}
\transl
\jour J. Appl. Industr. Math.
\yr 2024
\vol 18
\issue 2
\pages 234--245
\crossref{https://doi.org/10.1134/S1990478924020066}
Linking options:
  • https://www.mathnet.ru/eng/sjim1278
  • https://www.mathnet.ru/eng/sjim/v27/i2/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :2
    References:14
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025