Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2024, Volume 27, Number 1, Pages 87–107
DOI: https://doi.org/10.33048/SIBJIM.2024.27.107
(Mi sjim1275)
 

Differential equations with a small parameter and multipeak oscillations

G. A. Chumakovab, N. A. Chumakovacb

a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia $^2$Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia $^3$Novosibirsk State University, Novosibirsk, 630090 Russia
b Novosibirsk State University
c Boreskov Institute of Catalysis SB RAS, Novosibirsk
References:
Abstract: In this paper, we study a nonlinear dynamical system of autonomous ordinary differential equations with a small parameter $\mu$ such that two variables $x$ and $y$ are fast and another one $z$ is slow. If we take the limit as $\mu \to 0$, then this becomes a “degenerate system” included in the one-parameter family of two-dimensional subsystems of fast motions with the parameter $z$ in some interval. It is assumed that in each subsystem there exists a structurally stable limit cycle $l_z$. In addition, in the complete dynamical system there is some structurally stable periodic orbit $L$ that tends to a limit cycle $l_{z_0}$ for some $z=z_0$ as $\mu$ tends to zero. We can define the first return map, or the Poincaré map, on a local cross section in the hyperplane $(y, z)$ orthogonal to $L$ at some point. We prove that the Poincaré map has an invariant manifold for the fixed point corresponding to the periodic orbit $L$ on a guaranteed interval over the variable $y$, and the interval length is separated from zero as $\mu$ tends to zero. The proved theorem allows one to formulate some sufficient conditions for the existence and/or absence of multipeak oscillations in the complete dynamical system. As an example of application of the obtained results, we consider some kinetic model of the catalytic reaction of hydrogen oxidation on nickel.
Keywords: ordinary differential equation, small parameter, limit cycle, invariant manifold, Poincaré map, kinetic model, multipeak self-oscillations.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWUR-2024-0037
FWNF-2022-0005
Received: 25.09.2023
Revised: 21.01.2024
Accepted: 07.02.2024
English version:
Journal of Applied and Industrial Mathematics, 2024, Volume 18, Issue 1, Pages 18–35
DOI: https://doi.org/10.1134/S1990478924010034
Document Type: Article
UDC: 517.928.4:517.929.5
Language: Russian
Citation: G. A. Chumakov, N. A. Chumakova, “Differential equations with a small parameter and multipeak oscillations”, Sib. Zh. Ind. Mat., 27:1 (2024), 87–107; J. Appl. Industr. Math., 18:1 (2024), 18–35
Citation in format AMSBIB
\Bibitem{ChuChu24}
\by G.~A.~Chumakov, N.~A.~Chumakova
\paper Differential equations with a small parameter and multipeak oscillations
\jour Sib. Zh. Ind. Mat.
\yr 2024
\vol 27
\issue 1
\pages 87--107
\mathnet{http://mi.mathnet.ru/sjim1275}
\crossref{https://doi.org/10.33048/SIBJIM.2024.27.107}
\transl
\jour J. Appl. Industr. Math.
\yr 2024
\vol 18
\issue 1
\pages 18--35
\crossref{https://doi.org/10.1134/S1990478924010034}
Linking options:
  • https://www.mathnet.ru/eng/sjim1275
  • https://www.mathnet.ru/eng/sjim/v27/i1/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:43
    Full-text PDF :2
    References:16
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024