Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2023, Volume 26, Number 1, Pages 201–211
DOI: https://doi.org/10.33048/SIBJIM.2023.26.118
(Mi sjim1225)
 

Mathematical modeling of suspension flow in a system of intersecting fractures

R. R. Iulmukhametova, A. A. Musin, V. I. Valiullina, L. A. Kovaleva

Bashkir State University, ul. Zaki Validi 32, Ufa 450076, Russia
References:
Abstract: In this paper, mathematical modeling of the suspension flow in a complex system of fractures is carried out, when the main fracture is crossed by secondary fracture. The mathematical model of the process is built in the one-fluid approximation and includes the continuity equation for the suspension, the system of equations of suspension motion, the mass conservation equation in the form of a convective-diffusion transfer equation for the volume concentration of particles. The solution of the problem in a 3D formulation is implemented in the OpenFOAM software package. The dynamics of the distribution of solid spherical particles in a network of fractures was studied depending on the ratio of the characteristic Reynolds numbers for the flow and particles, as well as on the ratio of the length of the main and secondary fractures.
Keywords: suspension flow, intersecting fractures, mathematical modeling, one-fluid model, solid spherical particles. .
Funding agency Grant number
Russian Foundation for Basic Research 19-31-90157
Received: 29.07.2022
Revised: 29.07.2022
Accepted: 29.09.2022
English version:
Journal of Applied and Industrial Mathematics, 2023, Volume 17, Issue 1, Pages 225–233
DOI: https://doi.org/10.1134/S1990478923010246
Document Type: Article
UDC: 532.54
Language: Russian
Citation: R. R. Iulmukhametova, A. A. Musin, V. I. Valiullina, L. A. Kovaleva, “Mathematical modeling of suspension flow in a system of intersecting fractures”, Sib. Zh. Ind. Mat., 26:1 (2023), 201–211; J. Appl. Industr. Math., 17:1 (2023), 225–233
Citation in format AMSBIB
\Bibitem{IulMusVal23}
\by R.~R.~Iulmukhametova, A.~A.~Musin, V.~I.~Valiullina, L.~A.~Kovaleva
\paper Mathematical modeling of suspension flow in a system of intersecting fractures
\jour Sib. Zh. Ind. Mat.
\yr 2023
\vol 26
\issue 1
\pages 201--211
\mathnet{http://mi.mathnet.ru/sjim1225}
\crossref{https://doi.org/10.33048/SIBJIM.2023.26.118}
\transl
\jour J. Appl. Industr. Math.
\yr 2023
\vol 17
\issue 1
\pages 225--233
\crossref{https://doi.org/10.1134/S1990478923010246}
Linking options:
  • https://www.mathnet.ru/eng/sjim1225
  • https://www.mathnet.ru/eng/sjim/v26/i1/p201
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024