Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2023, Volume 26, Number 1, Pages 161–178
DOI: https://doi.org/10.33048/SIBJIM.2023.26.115
(Mi sjim1222)
 

This article is cited in 2 scientific papers (total in 2 papers)

Decomposition of symmetric tensor fields in $\mathbb{R}^3$

I. E. Svetov, A. P. Polyakova

Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia
Full-text PDF (663 kB) Citations (2)
References:
Abstract: In the article, we introduce generalizations of the curl operator acting on three-dimensional symmetric $m$-tensor fields and establish properties of them. For the spaces of three-dimensional tensor fields, new detailed decompositions are obtained. Each term in the decompositions is constructed using of one function. Decompositions of this kind play a special role, in particular, in the study of tomographic integral operators acting on symmetric $m$-tensor fields, $m\geqslant1$, and in the construction of algorithms for solving the emerging inverse problems.
Keywords: decomposition of symmetric tensor field, solenoidal field, potential field, potential, curl operator, computerized tomography, ray transform, Radon transform. .
Funding agency Grant number
Russian Foundation for Basic Research 19-51-12008-ННИО_а
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0009
Received: 19.05.2022
Revised: 04.10.2022
Accepted: 12.01.2023
English version:
Journal of Applied and Industrial Mathematics, 2023, Volume 17, Issue 1, Pages 199–212
DOI: https://doi.org/10.1134/S1990478923010222
Document Type: Article
UDC: 517.983:514.8
Language: Russian
Citation: I. E. Svetov, A. P. Polyakova, “Decomposition of symmetric tensor fields in $\mathbb{R}^3$”, Sib. Zh. Ind. Mat., 26:1 (2023), 161–178; J. Appl. Industr. Math., 17:1 (2023), 199–212
Citation in format AMSBIB
\Bibitem{SvePol23}
\by I.~E.~Svetov, A.~P.~Polyakova
\paper Decomposition of symmetric tensor fields in $\mathbb{R}^3$
\jour Sib. Zh. Ind. Mat.
\yr 2023
\vol 26
\issue 1
\pages 161--178
\mathnet{http://mi.mathnet.ru/sjim1222}
\crossref{https://doi.org/10.33048/SIBJIM.2023.26.115}
\transl
\jour J. Appl. Industr. Math.
\yr 2023
\vol 17
\issue 1
\pages 199--212
\crossref{https://doi.org/10.1134/S1990478923010222}
Linking options:
  • https://www.mathnet.ru/eng/sjim1222
  • https://www.mathnet.ru/eng/sjim/v26/i1/p161
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024