Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2023, Volume 26, Number 1, Pages 142–149
DOI: https://doi.org/10.33048/SIBJIM.2023.26.113
(Mi sjim1220)
 

This article is cited in 6 scientific papers (total in 6 papers)

Inverse problem for wave equation with polynomial nonlinearity

V. G. Romanova, T.V. Buguevaba

a Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia
Full-text PDF (569 kB) Citations (6)
References:
Abstract: For a wave equation containing nonlinearity in the form of a $n$-th order polynomial, the problem of determining the coefficients of the polynomial depending on the variable $x\in \mathbb{R}^3$ is studied. Plane waves propagating with a sharp front in a homogeneous medium in the direction of a unit vector $\boldsymbol\nu$ and falling on inhomogeneity localized inside some ball $B(R)$ are considered. It is assumed that the solutions of forward problems for all possible $\nu$ can be measured at points of the boundary of this ball at time close to the arrival of the wave front. It is shown that the solution of the inverse problem is reduced to a series of X-ray tomography problems.
Keywords: semilinear wave equation, inverse problem, plane waves, X-ray tomography, uniqueness. .
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0009
Received: 31.10.2022
Revised: 02.11.2022
Accepted: 12.01.2023
English version:
Journal of Applied and Industrial Mathematics, 2023, Volume 17, Issue 1, Pages 163–167
DOI: https://doi.org/10.1134/S1990478923010180
Document Type: Article
UDC: 517.968
Language: Russian
Citation: V. G. Romanov, T.V. Bugueva, “Inverse problem for wave equation with polynomial nonlinearity”, Sib. Zh. Ind. Mat., 26:1 (2023), 142–149; J. Appl. Industr. Math., 17:1 (2023), 163–167
Citation in format AMSBIB
\Bibitem{RomBug23}
\by V.~G.~Romanov, T.V.~Bugueva
\paper Inverse problem for wave equation with polynomial nonlinearity
\jour Sib. Zh. Ind. Mat.
\yr 2023
\vol 26
\issue 1
\pages 142--149
\mathnet{http://mi.mathnet.ru/sjim1220}
\crossref{https://doi.org/10.33048/SIBJIM.2023.26.113}
\transl
\jour J. Appl. Industr. Math.
\yr 2023
\vol 17
\issue 1
\pages 163--167
\crossref{https://doi.org/10.1134/S1990478923010180}
Linking options:
  • https://www.mathnet.ru/eng/sjim1220
  • https://www.mathnet.ru/eng/sjim/v26/i1/p142
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024