Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2023, Volume 26, Number 1, Pages 5–19
DOI: https://doi.org/10.33048/SIBJIM.2023.26.101
(Mi sjim1208)
 

This article is cited in 1 scientific paper (total in 1 paper)

Defining equations of the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear with constrained rotation

B. D. Anninab, N. I. Ostrosablina, R. I. Ugryumovba

a Lavrentyev Institute of Hydrodynamics SB RAS, pr. Akad. Lavrentyeva 15, Novosibirsk 630090, Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia
Full-text PDF (920 kB) Citations (1)
References:
Abstract: The paper presents the equations of the linear moment theory of elasticity for the case of arbitrary anisotropy of material tensors of the fourth rank. Symmetric and skew-symmetric components are distinguished in the defining relations. Some simplified variants of linear defining relations are considered. The possibility of Cauchy elasticity is allowed when material tensors of the fourth rank do not have the main symmetry. For material tensors that determine force and moment stresses, eigenmodulus and eigenstates are introduced, which are invariant characteristics of an elastic moment medium. For the case of plane deformation and constrained rotation, an example of a complete solution of a two-dimensional problem is given when there are only shear stresses. For anisotropic and isotropic elastic media, the solutions turn out to be significantly different.
Keywords: moment theory of elasticity, asymmetric stress tensors, defining equations, elastic modulus, fourth-rank tensors, pure shear, constrained rotation, two-dimensional problem. .
Received: 25.05.2022
Revised: 25.05.2022
Accepted: 12.01.2023
English version:
Journal of Applied and Industrial Mathematics, 2023, Volume 17, Issue 1, Pages 1–14
DOI: https://doi.org/10.1134/S1990478923010015
Document Type: Article
UDC: 539.3:517.958
Language: Russian
Citation: B. D. Annin, N. I. Ostrosablin, R. I. Ugryumov, “Defining equations of the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear with constrained rotation”, Sib. Zh. Ind. Mat., 26:1 (2023), 5–19; J. Appl. Industr. Math., 17:1 (2023), 1–14
Citation in format AMSBIB
\Bibitem{AnnOstUgr23}
\by B.~D.~Annin, N.~I.~Ostrosablin, R.~I.~Ugryumov
\paper Defining equations of~the anisotropic moment linear theory of elasticity and the two-dimensional problem of pure shear with constrained rotation
\jour Sib. Zh. Ind. Mat.
\yr 2023
\vol 26
\issue 1
\pages 5--19
\mathnet{http://mi.mathnet.ru/sjim1208}
\crossref{https://doi.org/10.33048/SIBJIM.2023.26.101}
\transl
\jour J. Appl. Industr. Math.
\yr 2023
\vol 17
\issue 1
\pages 1--14
\crossref{https://doi.org/10.1134/S1990478923010015}
Linking options:
  • https://www.mathnet.ru/eng/sjim1208
  • https://www.mathnet.ru/eng/sjim/v26/i1/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:113
    Full-text PDF :20
    References:22
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024