Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2022, Volume 25, Number 4, Pages 164–178
DOI: https://doi.org/10.33048/SIBJIM.2021.25.413
(Mi sjim1203)
 

Hierarchical method of parameter setting for population-based metaheuristic optimization algorithms

E. U. Seliverstov

Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5/1, Moscow 105005, Russia
References:
Abstract: Metaheuristic algorithms for a global optimization problem have unbound strategy parameters that affect solution accuracy and algorithm efficiency. The task of determining optimal values of unbound parameters is called a parameter setting problem that can be solved by static parameter setting methods (performed before the algorithm run) and dynamic parameter control methods (during run). The paper introduces a novel hierarchical parameter setting method for the class of population-based metaheuristic optimization algorithms. The distinctive feature of this method is usage of the hierarchical algorithm model. The lower level represents a sequential algorithm from this class, and the upper level represents an algorithm with the island parallel model. Parameter setting is performed by the hierarchical method, which composes parameter tuning for the sequential algorithm and adaptive parameter control for the parallel algorithm. Parameter control is based on vector fitness criteria which consist of a convergence rate and a solution value. An approach for estimating the convergence rate for a multistep optimization method is proposed. Experimental results for CEC benchmark problems are presented and discussed.
Keywords: global optimization, metaheuristic algorithms, parameter setting, parameter control. .
Received: 21.03.2022
Revised: 26.07.2022
Accepted: 29.09.2022
Document Type: Article
UDC: 519.6
Language: Russian
Citation: E. U. Seliverstov, “Hierarchical method of parameter setting for population-based metaheuristic optimization algorithms”, Sib. Zh. Ind. Mat., 25:4 (2022), 164–178
Citation in format AMSBIB
\Bibitem{Sel22}
\by E.~U.~Seliverstov
\paper Hierarchical method of parameter setting for population-based metaheuristic optimization algorithms
\jour Sib. Zh. Ind. Mat.
\yr 2022
\vol 25
\issue 4
\pages 164--178
\mathnet{http://mi.mathnet.ru/sjim1203}
\crossref{https://doi.org/10.33048/SIBJIM.2021.25.413}
Linking options:
  • https://www.mathnet.ru/eng/sjim1203
  • https://www.mathnet.ru/eng/sjim/v25/i4/p164
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024