Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2022, Volume 25, Number 4, Pages 116–135
DOI: https://doi.org/10.33048/SIBJIM.2021.25.410
(Mi sjim1200)
 

On optimal control in the problem of long-run tracking the exponential Ornstein—Uhlenbeck process

E. S. Palamarchukab

a Central Economics and Mathematics Institite RAS, Nakhimovsky prosp. 47, Moscow 117418, Russia
b Higher School of Economics, Pokrovsky bul. 11, Moscow 109028, Russia
References:
Abstract: We consider a problem of optimal tracking the exponential Ornstein—Uhlenbeck process. By change of variables, the linear-quadratic control system with discounting has been transformed into linear inhomogeneous system with random coefficients. For such a system, we obtain an optimal control law over an infinite time-horizon. The results are applied to derive an optimal control in the tracking problem with respect to criteria of long-term losses per unit of accumulated discount.
Keywords: linear stochastic controller, tracking, exponential Ornstein—Uhlenbeck process, discounting. .
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation AAAA-A21-121012090157-9
Received: 11.04.2022
Revised: 16.06.2022
Accepted: 22.06.2022
Document Type: Article
UDC: 519.71
Language: Russian
Citation: E. S. Palamarchuk, “On optimal control in the problem of long-run tracking the exponential Ornstein—Uhlenbeck process”, Sib. Zh. Ind. Mat., 25:4 (2022), 116–135
Citation in format AMSBIB
\Bibitem{Pal22}
\by E.~S.~Palamarchuk
\paper On optimal control in the problem of long-run tracking the exponential Ornstein---Uhlenbeck process
\jour Sib. Zh. Ind. Mat.
\yr 2022
\vol 25
\issue 4
\pages 116--135
\mathnet{http://mi.mathnet.ru/sjim1200}
\crossref{https://doi.org/10.33048/SIBJIM.2021.25.410}
Linking options:
  • https://www.mathnet.ru/eng/sjim1200
  • https://www.mathnet.ru/eng/sjim/v25/i4/p116
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024