|
This article is cited in 2 scientific papers (total in 2 papers)
On invariant surfaces in phase portraits
of circular gene networks models
N. B. Ayupovaa, V. P. Golubyatnikova, L. S. Minushkinab a Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia
Abstract:
For block-linear dynamical system of dimensions 3 and 4 considered as models of simplest circular gene networks, we find sufficient conditions of existence of invariant surfaces in their phase portraits. These surfaces contain periodic trajectories of the dynamical systems.
Keywords:
block-linear dynamical systems, invariant domains, invariant surfaces, Poincaré map, fixed point, cycles, Grobman—Hartman theorem, Perron—Frobenius theorem.
.
Received: 25.04.2022 Revised: 25.04.2022 Accepted: 22.06.2022
Citation:
N. B. Ayupova, V. P. Golubyatnikov, L. S. Minushkina, “On invariant surfaces in phase portraits
of circular gene networks models”, Sib. Zh. Ind. Mat., 25:4 (2022), 5–13
Linking options:
https://www.mathnet.ru/eng/sjim1191 https://www.mathnet.ru/eng/sjim/v25/i4/p5
|
Statistics & downloads: |
Abstract page: | 121 | Full-text PDF : | 34 | References: | 27 | First page: | 5 |
|