Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2021, Volume 24, Number 2, Pages 77–86
DOI: https://doi.org/10.33048/SIBJIM.2021.24.205
(Mi sjim1130)
 

This article is cited in 1 scientific paper (total in 1 paper)

On exact multidimensional solutions to a nonlinear system of fourth-order hyperbolic equations

A. A. Kosova, E. I. Semenova, V. V. Tirskikhb

a Matrosov Institute of System Dynamics and Control Theory SB RAS, ul. Lermontova 134, Irkutsk 664033, Russia
b Irkutsk State Transport University, ul. Chernyshevskogo 15, Irkutsk 664074, Russia
Full-text PDF (553 kB) Citations (1)
References:
Abstract: We study the system of two fourth-order nonlinear hyperbolic partial differential equations. The right-hand sides of the equations contain double Laplace operators and the squares of the gradients of the sought functions. Such equations, close to the Boussinesq equation and the Navier–Stokes equations, occur in problems of hydrodynamics. We propose to search for a solution in the form of an ansatz containing quadratic dependence on the spatial variables and arbitrary functions of time. The use of the proposed ansatz allows us to decompose the process of finding the components of the solution depending on the space variables and time. For finding the dependence on the spatial variables, it is necessary to solve an algebraic system of matrix, vector, and scalar equations. We find the general solution to this system in parametric form. In finding the time-dependent components of the solution to the original system, there arises a system of nonlinear ordinary differential equations. In the particular case when the squares of the gradients are not included in the system, we establish the existence of exact solutions of a certain kind to the original system expressed through arbitrary harmonic functions of the spatial variables and exponential functions of time. Some examples are given of the constructed exact solutions including solutions periodic in time and anisotropic in space variables. The exact solutions can be used to verify numerical methods for the approximate construction of the solutions to applied boundary value problems.
Keywords: nonlinear system, nonlinear hyperbolic equation, reduction, exact solution, Jacobi elliptic function. .
Funding agency Grant number
Russian Foundation for Basic Research 19-08-00746
20-07-00397
The authors were supported by the Russian Foundation for Basic Research (projects nos. 19-08-00746 and 20-07-00397).
Received: 09.11.2021
Revised: 03.02.2021
Accepted: 15.04.2021
English version:
Journal of Applied and Industrial Mathematics, 2021, Volume 15, Issue 2, Pages 253–260
DOI: https://doi.org/10.1134/S199047892102006X
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: A. A. Kosov, E. I. Semenov, V. V. Tirskikh, “On exact multidimensional solutions to a nonlinear system of fourth-order hyperbolic equations”, Sib. Zh. Ind. Mat., 24:2 (2021), 77–86; J. Appl. Industr. Math., 15:2 (2021), 253–260
Citation in format AMSBIB
\Bibitem{KosSemTir21}
\by A.~A.~Kosov, E.~I.~Semenov, V.~V.~Tirskikh
\paper On exact multidimensional solutions to a nonlinear system of fourth-order hyperbolic equations
\jour Sib. Zh. Ind. Mat.
\yr 2021
\vol 24
\issue 2
\pages 77--86
\mathnet{http://mi.mathnet.ru/sjim1130}
\crossref{https://doi.org/10.33048/SIBJIM.2021.24.205}
\elib{https://elibrary.ru/item.asp?id=46425481}
\transl
\jour J. Appl. Industr. Math.
\yr 2021
\vol 15
\issue 2
\pages 253--260
\crossref{https://doi.org/10.1134/S199047892102006X}
\elib{https://elibrary.ru/item.asp?id=47508422}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116217716}
Linking options:
  • https://www.mathnet.ru/eng/sjim1130
  • https://www.mathnet.ru/eng/sjim/v24/i2/p77
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :54
    References:45
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024