Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2021, Volume 24, Number 2, Pages 38–61
DOI: https://doi.org/10.33048/SIBJIM.2021.24.203
(Mi sjim1128)
 

This article is cited in 16 scientific papers (total in 16 papers)

The problem of finding the kernels in the system of integro-differential Maxwell's equations

D. K. Durdievab, K. K. Turdievb

a The Institute of Mathematics named after V.I. Romanovskiy at the Academy of Sciences of the Republic of Uzbekistan, ul. M. Ikbal 11, Bukhara 200117, Uzbekistan
b Bukhara State University, ul. M. Ikbal 11, Bukhara 200117, Uzbekistan
References:
Abstract: We pose the direct and inverse problem of finding the electromagnetic field and the diagonal memory matrix for the reduced canonical system of integro-differential Maxwell's equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables $x_1$ and $x_2$ of the solution to the direct problem and the unknowns of the inverse problem. To this system, we then apply the method of contraction mapping in the space of continuous functions with a weighted norm. Thus, we prove the global existence and uniqueness theorems for solutions to the posed problems.
Keywords: hyperbolic system, system of Maxwell's equations, integral equation, contraction mapping principle.
Received: 13.01.2021
Revised: 11.02.2021
Accepted: 15.04.2021
English version:
Journal of Applied and Industrial Mathematics, 2021, Volume 15, Issue 2, Pages 190–211
DOI: https://doi.org/10.1134/S1990478921020022
Bibliographic databases:
Document Type: Article
UDC: 517.968.72
Language: Russian
Citation: D. K. Durdiev, K. K. Turdiev, “The problem of finding the kernels in the system of integro-differential Maxwell's equations”, Sib. Zh. Ind. Mat., 24:2 (2021), 38–61; J. Appl. Industr. Math., 15:2 (2021), 190–211
Citation in format AMSBIB
\Bibitem{DurTur21}
\by D.~K.~Durdiev, K.~K.~Turdiev
\paper The problem of finding the kernels in the system
of integro-differential Maxwell's equations
\jour Sib. Zh. Ind. Mat.
\yr 2021
\vol 24
\issue 2
\pages 38--61
\mathnet{http://mi.mathnet.ru/sjim1128}
\crossref{https://doi.org/10.33048/SIBJIM.2021.24.203}
\elib{https://elibrary.ru/item.asp?id=47508377}
\transl
\jour J. Appl. Industr. Math.
\yr 2021
\vol 15
\issue 2
\pages 190--211
\crossref{https://doi.org/10.1134/S1990478921020022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116208076}
Linking options:
  • https://www.mathnet.ru/eng/sjim1128
  • https://www.mathnet.ru/eng/sjim/v24/i2/p38
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:397
    Full-text PDF :128
    References:59
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024