Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2021, Volume 24, Number 1, Pages 103–119
DOI: https://doi.org/10.33048/SIBJIM.2021.24.108
(Mi sjim1123)
 

This article is cited in 11 scientific papers (total in 11 papers)

Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem

E. M. Rudoyab, H. Itouc, N. P. Lazarevd

a Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia
b Lavrentyev Institute of Hydrodynamics SB RAS, pr. Akad. Lavrentyeva 15, Novosibirsk 630090, Russia
c Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan
d North-Eastern Federal University, ul. Kulakovskogo 48, Yakutsk 677000, Russia
References:
Abstract: The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.
Keywords: asymptotic analysis, antiplane shear, inhomogeneous elastic body, thin rigid inclusion, thin elastic inclusion, crack. .
Funding agency Grant number
Russian Foundation for Basic Research 18-41-140003
19-51-50004
Japan Society for the Promotion of Science J19-721
The authors were supported by the Russian Foundation for Basic Research (projects nos. 18-41-140003 and 19-51-50004) and the Japan Society for the Promotion of Science (project no. J19-721).
Received: 20.07.2020
Revised: 26.10.2020
Accepted: 28.12.2020
English version:
Journal of Applied and Industrial Mathematics, 2021, Volume 15, Issue 1, Pages 129–140
DOI: https://doi.org/10.1134/S1990478921010117
Bibliographic databases:
Document Type: Article
UDC: 517.951:539.37
Language: Russian
Citation: E. M. Rudoy, H. Itou, N. P. Lazarev, “Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem”, Sib. Zh. Ind. Mat., 24:1 (2021), 103–119; J. Appl. Industr. Math., 15:1 (2021), 129–140
Citation in format AMSBIB
\Bibitem{RudItoLaz21}
\by E.~M.~Rudoy, H.~Itou, N.~P.~Lazarev
\paper Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem
\jour Sib. Zh. Ind. Mat.
\yr 2021
\vol 24
\issue 1
\pages 103--119
\mathnet{http://mi.mathnet.ru/sjim1123}
\crossref{https://doi.org/10.33048/SIBJIM.2021.24.108}
\elib{https://elibrary.ru/item.asp?id=46091547}
\transl
\jour J. Appl. Industr. Math.
\yr 2021
\vol 15
\issue 1
\pages 129--140
\crossref{https://doi.org/10.1134/S1990478921010117}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104742847}
Linking options:
  • https://www.mathnet.ru/eng/sjim1123
  • https://www.mathnet.ru/eng/sjim/v24/i1/p103
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:250
    Full-text PDF :37
    References:35
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024