This article is cited in 1 scientific paper (total in 1 paper)
Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids
Abstract:
We consider the equations of a multivelocity model of a binary mixture of viscous compressible fluids (the two-fluid medium) in the case of one-dimensional barotropic motions. We prove the time global existence and uniqueness of a strong solution to the initial-boundary value problem describing the motion in a bounded space domain.
Keywords:
viscous compressible fluid, binary mixture, multivelocity multifluid, initial-boundary value problem, global existence, uniqueness, strong solution.
.
Citation:
A. E. Mamontov, D. A. Prokudin, “Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids”, Sib. Zh. Ind. Mat., 24:1 (2021), 32–47; J. Appl. Industr. Math., 15:1 (2021), 50–61
\Bibitem{MamPro21}
\by A.~E.~Mamontov, D.~A.~Prokudin
\paper Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids
\jour Sib. Zh. Ind. Mat.
\yr 2021
\vol 24
\issue 1
\pages 32--47
\mathnet{http://mi.mathnet.ru/sjim1118}
\crossref{https://doi.org/10.33048/SIBJIM.2021.24.103}
\elib{https://elibrary.ru/item.asp?id=46056949}
\transl
\jour J. Appl. Industr. Math.
\yr 2021
\vol 15
\issue 1
\pages 50--61
\crossref{https://doi.org/10.1134/S1990478921010051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104634304}
Linking options:
https://www.mathnet.ru/eng/sjim1118
https://www.mathnet.ru/eng/sjim/v24/i1/p32
This publication is cited in the following 1 articles:
A. E. Mamontov, D. A. Prokudin, “Asymptotic Behavior of the Solution to the Initial-boundary Value Problem for One-dimensional Motions of a Barotropic Compressible Viscous Multifluid”, Lobachevskii J Math, 45:4 (2024), 1463