Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2020, Volume 23, Number 4, Pages 48–68
DOI: https://doi.org/10.33048/SIBJIM.2020.23.404
(Mi sjim1108)
 

This article is cited in 12 scientific papers (total in 12 papers)

Analytical solutions to the differential equation of transverse vibrations of a piecewise homogeneous beam in the frequency domain for the boundary conditions of various types

A. L. Karchevsky

Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia
References:
Abstract: We obtain an analytical solution for the differential equation of transverse vibrations of a piecewise homogeneous beam in the frequency domain for various types of boundary conditions. All calculations involved are addition, multiplication, and inversion of square matrices of second order. The formulas are such that, when using them for layer-by-layer recalculation, the rounding error does not accumulate since the exponential functions in some expressions have exponents with nonpositive real parts.
Keywords: equation of transverse vibrations of a beam, layer-by-layer recalculation. .
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0011
The author was supported by the State Task to the Sobolev Institute of Mathematics (project no. 0314-2019-0011).
Received: 10.06.2020
Revised: 31.07.2020
Accepted: 10.09.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 4, Pages 648–665
DOI: https://doi.org/10.1134/S1990478920040043
Bibliographic databases:
Document Type: Article
UDC: 519.624.3
Language: Russian
Citation: A. L. Karchevsky, “Analytical solutions to the differential equation of transverse vibrations of a piecewise homogeneous beam in the frequency domain for the boundary conditions of various types”, Sib. Zh. Ind. Mat., 23:4 (2020), 48–68; J. Appl. Industr. Math., 14:4 (2020), 648–665
Citation in format AMSBIB
\Bibitem{Kar20}
\by A.~L.~Karchevsky
\paper Analytical solutions to the differential equation of transverse vibrations of a piecewise homogeneous beam in the frequency domain for the boundary conditions of various types
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 4
\pages 48--68
\mathnet{http://mi.mathnet.ru/sjim1108}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.404}
\elib{https://elibrary.ru/item.asp?id=44752279}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 4
\pages 648--665
\crossref{https://doi.org/10.1134/S1990478920040043}
\elib{https://elibrary.ru/item.asp?id=44967504}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100219592}
Linking options:
  • https://www.mathnet.ru/eng/sjim1108
  • https://www.mathnet.ru/eng/sjim/v23/i4/p48
  • This publication is cited in the following 12 articles:
    1. U. D. Durdiev, “Obratnaya zadacha ob istochnike dlya uravneniya vynuzhdennykh kolebanii balki”, Izv. vuzov. Matem., 2023, no. 8, 10–22  mathnet  crossref
    2. U. D. Durdiev, Z. R. Bozorov, “Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation”, J. Appl. Industr. Math., 17:2 (2023), 281–290  mathnet  crossref  crossref
    3. U. D. Durdiev, “Inverse Source Problem for the Equation of Forced Vibrations of a Beam”, Russ Math., 67:8 (2023), 7  crossref
    4. U. D Durdiev, “Nelokal'naya obratnaya zadacha po vremeni dlya uravneniya kolebaniy balki s integral'nym usloviem”, Differentsialnye uravneniya, 59:3 (2023), 358  crossref
    5. U. D. Durdiev, “A Time-Nonlocal Inverse Problem for the Beam Vibration Equation with an Integral Condition”, Diff Equat, 59:3 (2023), 359  crossref
    6. U. D. Durdiev, “Inverse Problem of Determining the Unknown Coefficient in the Beam Vibration Equation in an Infinite Domain”, Diff Equat, 59:4 (2023), 462  crossref
    7. M. V. Neschchadim, A. A. Simonov, “Backlund transformations of the relativistic Schrodinger equation”, J. Appl. Industr. Math., 17:4 (2023), 828–841  mathnet  crossref  crossref
    8. Yu. E. Anikonov, M. V. Neschadim, A. P. Chupakhin, “Mnogomernoe uravnenie Khopfa i nekotorye ego tochnye resheniya”, Sib. zhurn. industr. matem., 25:1 (2022), 5–13  mathnet  crossref  mathscinet
    9. Yu. E. Anikonov, M. V. Neshchadim, A. P. Chupakhin, “Multidimensional Hopf Equation and Some of Its Exact Solutions”, J. Appl. Ind. Math., 16:1 (2022), 1  crossref
    10. U. D. Durdiev, “Inverse Problem of Determining an Unknown Coefficient in the Beam Vibration Equation”, Diff Equat, 58:1 (2022), 36  crossref
    11. M. V. Neshchadim, A. P. Chupakhin, “Method of commutators for integration of a matrix Riccati equation”, J. Appl. Industr. Math., 15:1 (2021), 78–86  mathnet  crossref  crossref  elib
    12. M. V. Neshchadim, A. P. Chupakhin, “On integration of a matrix Riccati equation”, J. Appl. Industr. Math., 14:4 (2020), 732–742  mathnet  crossref  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :226
    References:50
    First page:8
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025