Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2020, Volume 23, Number 3, Pages 105–122
DOI: https://doi.org/10.33048/SIBJIM.2020.23.309
(Mi sjim1102)
 

This article is cited in 11 scientific papers (total in 11 papers)

Analysis of a stage-dependent epidemic model based on a non-Markov random process

N. V. Pertsev, K. K. Loginov, V. A. Topchii

Sobolev Institute of Mathematics SB RAS, ul. Pevtsova 13, Omsk 644043, Russia
References:
Abstract: We present some stochastic model of an infection spread among the adult population of a certain region. The model bases on a random birth and death process supplemented by the point distributions that reflect the durations of stay of individuals at various stages of the disease. The durations of some stages of the disease are assumed constant. The model is a stochastic analog of a system of delay differential equations and convolution integral equations describing the infection spread in the deterministic approach. We address the problem of the infection eradication over a time span comparable to the average lifetime of several generations of individuals. The results of computational experiments are presented, where the dynamics of mathematical expectations of the size of certain groups of individuals is studied and the probability of the infection eradication over a finite time span is estimated using the Monte Carlo method.
Keywords: stage-dependent epidemic model, random birth and death process, non-Markov random process, point distribution, Monte Carlo method, computational experiment, eradication of infection. .
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0009
Russian Science Foundation 18-71-10028
N. V. Pertsev and K. K. Loginov were supported by the State Task to the Sobolev Institute of Mathematics (project no. 0314-2019-0009). V. A. Topchii was supported by the Russian Science Foundation (project no. 18-71-10028).
Received: 27.12.2019
Revised: 27.12.2019
Accepted: 16.07.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 3, Pages 566–580
DOI: https://doi.org/10.1134/S1990478920030151
Bibliographic databases:
Document Type: Article
UDC: 519.248:574.3
Language: Russian
Citation: N. V. Pertsev, K. K. Loginov, V. A. Topchii, “Analysis of a stage-dependent epidemic model based on a non-Markov random process”, Sib. Zh. Ind. Mat., 23:3 (2020), 105–122; J. Appl. Industr. Math., 14:3 (2020), 566–580
Citation in format AMSBIB
\Bibitem{PerLogTop20}
\by N.~V.~Pertsev, K.~K.~Loginov, V.~A.~Topchii
\paper Analysis of a stage-dependent epidemic model based on a non-Markov random process
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 3
\pages 105--122
\mathnet{http://mi.mathnet.ru/sjim1102}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.309}
\elib{https://elibrary.ru/item.asp?id=44282782}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 3
\pages 566--580
\crossref{https://doi.org/10.1134/S1990478920030151}
\elib{https://elibrary.ru/item.asp?id=45184161}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094680055}
Linking options:
  • https://www.mathnet.ru/eng/sjim1102
  • https://www.mathnet.ru/eng/sjim/v23/i3/p105
  • This publication is cited in the following 11 articles:
    1. G. A. Mikhailov, G. Z. Lotova, S. V. Rogasinsky, “Study of the Bias in Monte Carlo N-Particle Estimates for Problems with Particle Interaction”, Dokl. Math., 2025  crossref
    2. G. Z. Lotova, G. A. Mikhailov, S. V. Rogasinsky, “Study and Optimization of N-Particle Numerical Statistical Algorithm for Solving the Boltzmann Equation”, Comput. Math. and Math. Phys., 64:5 (2024), 1065  crossref
    3. G. Z Lotova, G. A Mikhailov, S. V Rogazinsky, “INVESTIGATION AND OPTIMIZATION OF THE N-PARTIAL NUMERICAL STATISTICAL ALGORITHM FOR SOLVING THE BOLTZMANN EQUATION”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:5 (2024), 842  crossref
    4. G. A. Mikhailov, G. Z. Lotova, S. V. Rogazinskii, “Study of the bias of $N$-particle estimates of the Monte Carlo method in problems with particle interaction”, Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024), 33–38  mathnet  mathnet  crossref
    5. N. V. Pertsev, V. A. Topchii, K. K. Loginov, “Stochastic modeling of local by time and location contacts of individuals in the epidemic process”, J. Appl. Industr. Math., 17:2 (2023), 355–369  mathnet  crossref  crossref
    6. N. V. Pertsev, V. A. Topchii, K. K. Loginov, “Stokhasticheskoe modelirovanie epidemicheskogo protsessa na osnove stadiya-zavisimoi modeli s nemarkovskimi ogranicheniyami dlya individuumov”, Matem. biologiya i bioinform., 18:1 (2023), 145–176  mathnet  crossref
    7. N. V. Pertsev, V. A. Topchii, K. K. Loginov, “Chislennoe stokhasticheskoe modelirovanie dinamiki vzaimodeistvuyuschikh populyatsii”, Sib. zhurn. industr. matem., 25:3 (2022), 135–153  mathnet  crossref
    8. N. V. Pertsev, K. K. Loginov, A. N. Lukashev, Yu. A. Vakulenko, “Stokhasticheskoe modelirovanie dinamiki rasprostraneniya Kovid-19 s uchetom neodnorodnosti naseleniya po immunologicheskim, klinicheskim i epidemiologicheskim kriteriyam”, Matem. biologiya i bioinform., 17:1 (2022), 43–81  mathnet  crossref  elib
    9. N. V. Pertsev, V. A. Topchii, K. K. Loginov, “Numerical Stochastic Modeling of Dynamics of Interacting Populations”, J. Appl. Ind. Math., 16:3 (2022), 524  crossref
    10. G. Z. Lotova, V. L. Lukinov, M. A. Marchenko, G. A. Mikhailov, D. D. Smirnov, “Numerical-statistical study of the prognostic efficiency of the SEIR model”, Russ. J. Numer. Anal. Math. Model, 36:6 (2021), 337–345  crossref  mathscinet  isi  scopus
    11. K. K. Loginov, N. V. Pertsev, “Pryamoe statisticheskoe modelirovanie rasprostraneniya epidemii na osnove stadiya-zavisimoi stokhasticheskoi modeli”, Matem. biologiya i bioinform., 16:2 (2021), 169–200  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :102
    References:36
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025