Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2020, Volume 23, Number 3, Pages 105–122
DOI: https://doi.org/10.33048/SIBJIM.2020.23.309
(Mi sjim1102)
 

This article is cited in 9 scientific papers (total in 9 papers)

Analysis of a stage-dependent epidemic model based on a non-Markov random process

N. V. Pertsev, K. K. Loginov, V. A. Topchii

Sobolev Institute of Mathematics SB RAS, ul. Pevtsova 13, Omsk 644043, Russia
References:
Abstract: We present some stochastic model of an infection spread among the adult population of a certain region. The model bases on a random birth and death process supplemented by the point distributions that reflect the durations of stay of individuals at various stages of the disease. The durations of some stages of the disease are assumed constant. The model is a stochastic analog of a system of delay differential equations and convolution integral equations describing the infection spread in the deterministic approach. We address the problem of the infection eradication over a time span comparable to the average lifetime of several generations of individuals. The results of computational experiments are presented, where the dynamics of mathematical expectations of the size of certain groups of individuals is studied and the probability of the infection eradication over a finite time span is estimated using the Monte Carlo method.
Keywords: stage-dependent epidemic model, random birth and death process, non-Markov random process, point distribution, Monte Carlo method, computational experiment, eradication of infection. .
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0009
Russian Science Foundation 18-71-10028
N. V. Pertsev and K. K. Loginov were supported by the State Task to the Sobolev Institute of Mathematics (project no. 0314-2019-0009). V. A. Topchii was supported by the Russian Science Foundation (project no. 18-71-10028).
Received: 27.12.2019
Revised: 27.12.2019
Accepted: 16.07.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 3, Pages 566–580
DOI: https://doi.org/10.1134/S1990478920030151
Bibliographic databases:
Document Type: Article
UDC: 519.248:574.3
Language: Russian
Citation: N. V. Pertsev, K. K. Loginov, V. A. Topchii, “Analysis of a stage-dependent epidemic model based on a non-Markov random process”, Sib. Zh. Ind. Mat., 23:3 (2020), 105–122; J. Appl. Industr. Math., 14:3 (2020), 566–580
Citation in format AMSBIB
\Bibitem{PerLogTop20}
\by N.~V.~Pertsev, K.~K.~Loginov, V.~A.~Topchii
\paper Analysis of a stage-dependent epidemic model based on a non-Markov random process
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 3
\pages 105--122
\mathnet{http://mi.mathnet.ru/sjim1102}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.309}
\elib{https://elibrary.ru/item.asp?id=44282782}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 3
\pages 566--580
\crossref{https://doi.org/10.1134/S1990478920030151}
\elib{https://elibrary.ru/item.asp?id=45184161}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094680055}
Linking options:
  • https://www.mathnet.ru/eng/sjim1102
  • https://www.mathnet.ru/eng/sjim/v23/i3/p105
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :83
    References:31
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024