Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2020, Volume 23, Number 3, Pages 40–52
DOI: https://doi.org/10.33048/SIBJIM.2020.23.304
(Mi sjim1097)
 

This article is cited in 7 scientific papers (total in 7 papers)

Solution of the convolution type Volterra integral equations of the first kind by the quadrature-sum method

A. L. Karchevsky

Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia, Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia
Full-text PDF (741 kB) Citations (7)
References:
Abstract: Some algorithm is presented for solving the convolution type Volterra integral equation of the first kind by the quadrature-sum method. We assume that the integral equation of the first kind cannot be reduced to an integral equation of the second kind but we do not assume that either the kernel or some of its derivatives at zero are unequal to zero. For the relations we propose there is given an estimate of the error of the calculated solution. Some examples of numerical experiments are presented to demonstrate the efficiency of the algorithm.
Keywords: integral Volterra equation, convolution type equation, numerical solution.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0011
The author was supported by the State Task to the Sobolev Institute of Mathematics (project no. 0314-2019-0011).
Received: 24.04.2020
Revised: 10.07.2020
Accepted: 16.07.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 3, Pages 503–512
DOI: https://doi.org/10.1134/S1990478920030096
Bibliographic databases:
Document Type: Article
UDC: 519.642.5
Language: Russian
Citation: A. L. Karchevsky, “Solution of the convolution type Volterra integral equations of the first kind by the quadrature-sum method”, Sib. Zh. Ind. Mat., 23:3 (2020), 40–52; J. Appl. Industr. Math., 14:3 (2020), 503–512
Citation in format AMSBIB
\Bibitem{Kar20}
\by A.~L.~Karchevsky
\paper Solution of the convolution type Volterra integral equations
of the first kind by the quadrature-sum method
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 3
\pages 40--52
\mathnet{http://mi.mathnet.ru/sjim1097}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.304}
\elib{https://elibrary.ru/item.asp?id=44282777}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 3
\pages 503--512
\crossref{https://doi.org/10.1134/S1990478920030096}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094681805}
Linking options:
  • https://www.mathnet.ru/eng/sjim1097
  • https://www.mathnet.ru/eng/sjim/v23/i3/p40
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :243
    References:50
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024