Abstract:
Some algorithm is presented for solving the convolution type Volterra integral equation of the first kind by the quadrature-sum method. We assume that the integral equation of the first kind cannot be reduced to an integral equation of the second kind
but we do not assume that either the kernel or some of its derivatives at zero are unequal to zero. For the relations we propose there is given an estimate of the error of the calculated solution. Some examples of numerical experiments are presented
to demonstrate the efficiency of the algorithm.
Keywords:
integral Volterra equation, convolution type equation, numerical solution.
Citation:
A. L. Karchevsky, “Solution of the convolution type Volterra integral equations
of the first kind by the quadrature-sum method”, Sib. Zh. Ind. Mat., 23:3 (2020), 40–52; J. Appl. Industr. Math., 14:3 (2020), 503–512
\Bibitem{Kar20}
\by A.~L.~Karchevsky
\paper Solution of the convolution type Volterra integral equations
of the first kind by the quadrature-sum method
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 3
\pages 40--52
\mathnet{http://mi.mathnet.ru/sjim1097}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.304}
\elib{https://elibrary.ru/item.asp?id=44282777}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 3
\pages 503--512
\crossref{https://doi.org/10.1134/S1990478920030096}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094681805}
Linking options:
https://www.mathnet.ru/eng/sjim1097
https://www.mathnet.ru/eng/sjim/v23/i3/p40
This publication is cited in the following 8 articles:
A. Yu. Scheglov, S. V. Netesov, “Obratnaya zadacha dlya modeli razvitiya populyatsii s uchetom vozrasta organizmov i migratsionnykh potokov”, Sib. zhurn. vychisl. matem., 27:1 (2024), 113–120
A. Yu. Shcheglov, S. V. Netessov, “An Inverse Problem for an Age-Structured Population Dynamics Model with Migration Flows”, Numer. Analys. Appl., 17:1 (2024), 93
George A. Anastassiou, “Approximation by Symmetrized and Perturbed Hyperbolic Tangent Activated Convolution-Type Operators”, Mathematics, 12:20 (2024), 3302
George A. Anastassiou, “Multivariate Approximation Using Symmetrized and Perturbed Hyperbolic Tangent-Activated Multidimensional Convolution-Type Operators”, Axioms, 13:11 (2024), 779
O. V. Germider, V. N. Popov, “O metode kollokatsii pri postroenii resheniya integralnogo uravneniya Volterra vtorogo roda s ispolzovaniem mnogochlenov Chebysheva i Lezhandra”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 50 (2024), 19–35
S. P. Osipov, S. A. Shchetinkin, E. Yu. Usachev, S. V. Chakhlov, O. S. Osipov, “Reconstructing Signals of Scintillation Detectors”, Russ J Nondestruct Test, 58:6 (2022), 466
A. L. Karchevsky, V. V. Cheverda, I. V. Marchuk, T. G. Gigola, V. S. Sulyaeva, O. A. Kabov, “Heat flux density evaluation in the region of contact line of drop on a sapphire surface using infrared thermography measurements”, Microgravity Sci. Technol., 33:4 (2021), 53
Karchevsky A.L., “Numerical Solving the Heat Equation With Data on a Time-Like Boundary For the Heated Thin Foil Technique”, Eurasian J. Math. Comput. Appl., 8:4 (2020), 4–14