Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2020, Volume 23, Number 2, Pages 63–80
DOI: https://doi.org/10.33048/SIBJIM.2020.23.205
(Mi sjim1088)
 

This article is cited in 31 scientific papers (total in 31 papers)

The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium

D. K. Durdiev, A. A. Rahmonov

Bukhara State University, ul. M.Ikbol 11, Bukhara 200117, Uzbekistan
References:
Abstract: Under consideration is the system of integro-differential equations of viscoelastic porous medium. The direct problem is to define the $y$-component of the displacement vectors of the elastic porous body and the liquid from the initial boundary value problem for these equations. We assume that the kernel of the integral term of the first equation depends on time and one of the spatial variables. To determine the kernel, some additional condition is given on the solution of the direct problem for $z=0$. The inverse problem is replaced by an equivalent system of integro-differential equations for the unknown functions. We apply the method of scales of the Banach spaces of analytic functions. The local solvability of the inverse problem is proved in the class of the functions analytic in $x$ and continuous in $t$.
Keywords: inverse problem, kernel, Dirac delta function, integro-differential equation, analytic function.
Received: 04.02.2020
Revised: 23.03.2020
Accepted: 09.04.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 2, Pages 281–295
DOI: https://doi.org/10.1134/S1990478920020076
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: D. K. Durdiev, A. A. Rahmonov, “The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium”, Sib. Zh. Ind. Mat., 23:2 (2020), 63–80; J. Appl. Industr. Math., 14:2 (2020), 281–295
Citation in format AMSBIB
\Bibitem{DurRak20}
\by D.~K.~Durdiev, A.~A.~Rahmonov
\paper The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 2
\pages 63--80
\mathnet{http://mi.mathnet.ru/sjim1088}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.205}
\elib{https://elibrary.ru/item.asp?id=45438258}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 2
\pages 281--295
\crossref{https://doi.org/10.1134/S1990478920020076}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087698999}
Linking options:
  • https://www.mathnet.ru/eng/sjim1088
  • https://www.mathnet.ru/eng/sjim/v23/i2/p63
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:321
    Full-text PDF :102
    References:43
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024