Loading [MathJax]/jax/output/CommonHTML/jax.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2020, Volume 23, Number 2, Pages 63–80
DOI: https://doi.org/10.33048/SIBJIM.2020.23.205
(Mi sjim1088)
 

This article is cited in 31 scientific papers (total in 31 papers)

The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium

D. K. Durdiev, A. A. Rahmonov

Bukhara State University, ul. M.Ikbol 11, Bukhara 200117, Uzbekistan
References:
Abstract: Under consideration is the system of integro-differential equations of viscoelastic porous medium. The direct problem is to define the y-component of the displacement vectors of the elastic porous body and the liquid from the initial boundary value problem for these equations. We assume that the kernel of the integral term of the first equation depends on time and one of the spatial variables. To determine the kernel, some additional condition is given on the solution of the direct problem for z=0. The inverse problem is replaced by an equivalent system of integro-differential equations for the unknown functions. We apply the method of scales of the Banach spaces of analytic functions. The local solvability of the inverse problem is proved in the class of the functions analytic in x and continuous in t.
Keywords: inverse problem, kernel, Dirac delta function, integro-differential equation, analytic function.
Received: 04.02.2020
Revised: 23.03.2020
Accepted: 09.04.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 2, Pages 281–295
DOI: https://doi.org/10.1134/S1990478920020076
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: D. K. Durdiev, A. A. Rahmonov, “The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium”, Sib. Zh. Ind. Mat., 23:2 (2020), 63–80; J. Appl. Industr. Math., 14:2 (2020), 281–295
Citation in format AMSBIB
\Bibitem{DurRak20}
\by D.~K.~Durdiev, A.~A.~Rahmonov
\paper The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 2
\pages 63--80
\mathnet{http://mi.mathnet.ru/sjim1088}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.205}
\elib{https://elibrary.ru/item.asp?id=45438258}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 2
\pages 281--295
\crossref{https://doi.org/10.1134/S1990478920020076}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087698999}
Linking options:
  • https://www.mathnet.ru/eng/sjim1088
  • https://www.mathnet.ru/eng/sjim/v23/i2/p63
  • This publication is cited in the following 31 articles:
    1. Jonibek Jumaev, Zavqiddin Bozorov, Istam Shadmanov, Dilshod Atoev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040004  crossref
    2. Durdimurod Durdiev, Javlon Nuriddinov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040013  crossref
    3. Jonibek Jumaev, Durdimurod Durdiev, Shakhnoza Ibragimova, Bekhzod Zaripov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040011  crossref
    4. Durdimurod Durdiev, Javlon Nuriddinov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040014  crossref
    5. Zavqiddin Bozorov, Halim Turdiev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040010  crossref
    6. Durdimurod Durdiev, Halim Turdiev, Asliddin Boltaev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040015  crossref
    7. Zhanna D. Totieva, “A global in time existence and uniqueness result of a multidimensional inverse problem”, Applicable Analysis, 103:4 (2024), 701  crossref
    8. Zh. Sh. Safarov, “Obratnaya zadacha dlya integro-differentsialnogo uravneniya giperbolicheskogo tipa s dopolnitelnoi informatsiei spetsialnogo vida v ogranichennoi oblasti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 28:1 (2024), 29–44  mathnet  crossref
    9. J. Sh. Safarov, D. K. Durdiev, A. A. Rakhmonov, “Inverse problem for a hyperbolic integro-differential equation in a bounded domain”, Siberian Adv. Math., 34:2 (2024), 154–166  mathnet  crossref  crossref
    10. J. Sh. Safarov, U. N. Kalandarov, M. J. Safarova, “Inverse Problem of Determining a Kernel of the Viscoelasticity Equation with Distributed Data in a Limited Domain”, Lobachevskii J Math, 45:7 (2024), 3380  crossref
    11. D. K. Durdiev, A. A. Boltaev, “Zadacha opredeleniya yader v dvumernoi sisteme uravnenii vyazkouprugosti”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 43 (2023), 31–47  mathnet  crossref  mathscinet
    12. D. K. Durdiev, J. Sh. Safarov, J. Sh. Safarov, “Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type protect in a Rectangular Domain”, Math. Notes, 114:2 (2023), 199–211  mathnet  crossref  crossref  mathscinet
    13. U. D. Durdiev, Z. R. Bozorov, “Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation”, J. Appl. Industr. Math., 17:2 (2023), 281–290  mathnet  crossref  crossref
    14. D. K. Durdiev, Kh. Kh. Turdiev, “Zadacha opredeleniya yader v sisteme integro-differentsialnykh uravnenii akustiki”, Dalnevost. matem. zhurn., 23:2 (2023), 190–210  mathnet  crossref
    15. Murat A. Sultanov, Durdimurod Durdiev, Askar Rahmonov, Rauan Turebekov, Yerkebulan Nurlanuly, SIXTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2022), 2879, SIXTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2022), 2023, 040002  crossref
    16. U. D. Durdiev, “Inverse Problem of Determining the Unknown Coefficient in the Beam Vibration Equation in an Infinite Domain”, Diff Equat, 59:4 (2023), 462  crossref
    17. U. D. Durdiev, “A Time-Nonlocal Inverse Problem for the Beam Vibration Equation with an Integral Condition”, Diff Equat, 59:3 (2023), 359  crossref
    18. D. K. Durdiev, J. J. Jumaev, D. D. Atoev, “Inverse problem on determining two kernels in integro-differential equation of heat flow”, Ufa Math. J., 15:2 (2023), 119–134  mathnet  mathnet  crossref
    19. Durdiev D.K., Zhumaev Zh.Zh., “Memory Kernel Reconstruction Problems in the Integro-Differential Equation of Rigid Heat Conductor”, Math. Meth. Appl. Sci., 45:14 (2022), 8374–8388  crossref  mathscinet  isi  scopus
    20. D. K. Durdiev, Zh. Sh. Safarov, “Zadacha ob opredelenii dvumernogo yadra uravneniya vyazkouprugosti so slabo gorizontalnoi neodnorodnostyu”, Sib. zhurn. industr. matem., 25:1 (2022), 14–38  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:378
    Full-text PDF :132
    References:62
    First page:11
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025