Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2020, Volume 23, Number 1, Pages 93–106
DOI: https://doi.org/10.33048/SIBJIM.2020.23.109
(Mi sjim1080)
 

This article is cited in 3 scientific papers (total in 3 papers)

The heat transfer equation with an unknown heat capacity coefficient

A. I. Kozhanovab

a Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia
b Sobolev Institute of Mathematics, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia
Full-text PDF (589 kB) Citations (3)
References:
Abstract: Under study are the inverse problems of finding, together with a solution $u(x,t)$ of the differential equation $cu_t -\Delta u + a(x,t)u = f(x,t)$ describing the process of heat distribution, some real $c$ characterizing the heat capacity of the medium (under the assumption that the medium is homogeneous). Not only the initial condition is imposed on $u(x,t)$, but also the usual conditions of the first or second initial-boundary value problems as well as some special overdetermination conditions. We prove the theorems of existence of a solution $(u(x,t),c)$ such that $u(x,t)$ has all Sobolev generalized derivatives entered into the equation, while $c$ is a positive number.
Keywords: heat transfer equation, heat capacity coefficient, inverse problem, final-integral overdetermination conditions, existence.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00620_а
The author was supported by the Russian Foundation for Basic Research (project no. 18-01-00620).
Received: 01.07.2019
Revised: 01.07.2019
Accepted: 05.12.2019
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 1, Pages 104–114
DOI: https://doi.org/10.1134/S1990478920010111
Document Type: Article
UDC: 517.946
Language: Russian
Citation: A. I. Kozhanov, “The heat transfer equation with an unknown heat capacity coefficient”, Sib. Zh. Ind. Mat., 23:1 (2020), 93–106; J. Appl. Industr. Math., 14:1 (2020), 104–114
Citation in format AMSBIB
\Bibitem{Koz20}
\by A.~I.~Kozhanov
\paper The heat transfer equation with an unknown heat capacity coefficient
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 1
\pages 93--106
\mathnet{http://mi.mathnet.ru/sjim1080}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.109}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 1
\pages 104--114
\crossref{https://doi.org/10.1134/S1990478920010111}
Linking options:
  • https://www.mathnet.ru/eng/sjim1080
  • https://www.mathnet.ru/eng/sjim/v23/i1/p93
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:507
    Full-text PDF :181
    References:62
    First page:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024