Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2020, Volume 23, Number 1, Pages 58–69
DOI: https://doi.org/10.33048/SIBJIM.2020.23.106
(Mi sjim1077)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the boundary value problem for a model of nonisothermal flows of a non-Newtonian fluid

A. A. Domnich, M. A. Artemov, O. Yu. Shishkina

Voronezh State University, Universitetskaya pl. 1, Voronezh 394018, Russia
Full-text PDF (599 kB) Citations (2)
References:
Abstract: Under study is a stationary model describing non-Newtonian fluid flows with the viscosity dependent on the strain rate and the heat transfer in a bounded 3D domain. This model is a strongly nonlinear system of coupled partial differential equations for the velocity field, temperature, and pressure. On the boundary of the flow domain, the system is supplemented with a no-slip condition and a linear Robin-type boundary condition for the temperature. An operator formulation of this boundary-value problem is proposed. Using the properties of $d$-monotone operators and the Leray–Schauder Fixed Point Theorem, we prove the existence of weak solutions under natural conditions for the data of the model. It is also shown that the solutions set is bounded and closed.
Keywords: non-Newtonian fluid, heat transfer, $d$-monotone operator, fixed point, weak solution.
Received: 14.10.2019
Revised: 05.12.2019
Accepted: 05.12.2019
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 1, Pages 37–45
DOI: https://doi.org/10.1134/S1990478920010056
Document Type: Article
UDC: 517.958
Language: Russian
Citation: A. A. Domnich, M. A. Artemov, O. Yu. Shishkina, “On the boundary value problem for a model of nonisothermal flows of a non-Newtonian fluid”, Sib. Zh. Ind. Mat., 23:1 (2020), 58–69; J. Appl. Industr. Math., 14:1 (2020), 37–45
Citation in format AMSBIB
\Bibitem{DomArtShi20}
\by A.~A.~Domnich, M.~A.~Artemov, O.~Yu.~Shishkina
\paper On the boundary value problem for a model of nonisothermal flows of a non-Newtonian fluid
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 1
\pages 58--69
\mathnet{http://mi.mathnet.ru/sjim1077}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.106}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 1
\pages 37--45
\crossref{https://doi.org/10.1134/S1990478920010056}
Linking options:
  • https://www.mathnet.ru/eng/sjim1077
  • https://www.mathnet.ru/eng/sjim/v23/i1/p58
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :70
    References:40
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024