Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2020, Volume 23, Number 1, Pages 28–45
DOI: https://doi.org/10.33048/SIBJIM.2020.23.104
(Mi sjim1075)
 

This article is cited in 6 scientific papers (total in 6 papers)

The problem of determining the two-dimensional kernel of a viscoelasticity equation

Z. R. Bozorov

Bukhara State University, ul. M. Ikbola 11, Bukhara 200100, Uzbekistan
Full-text PDF (567 kB) Citations (6)
References:
Abstract: Under consideration is the integro-differential equation of viscoelasticity. The direct problem is to determine the $z$-component of the displacement vector from the initial boundary value problem for the equation. We assume that the kernel of the integral term of the equation depends on time and a spatial variable $x$. For determination of the kernel the additional condition is posed on the solution of the direct problem for $y=0$. The inverse problem is replaced by an equivalent system of integro-differential equations for the unknown functions. To this system, we apply the method of scales of Banach spaces of analytic functions. The local unique solvability of the inverse problem is proved in the class of functions analytic in $x$ and continuous in $t$.
Keywords: integro-differential equation, inverse problem, uniqueness, analytic function, viscoelasticity.
Received: 14.08.2019
Revised: 05.09.2019
Accepted: 05.09.2019
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 1, Pages 20–36
DOI: https://doi.org/10.1134/S1990478920010044
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: Z. R. Bozorov, “The problem of determining the two-dimensional kernel of a viscoelasticity equation”, Sib. Zh. Ind. Mat., 23:1 (2020), 28–45; J. Appl. Industr. Math., 14:1 (2020), 20–36
Citation in format AMSBIB
\Bibitem{Boz20}
\by Z.~R.~Bozorov
\paper The problem of determining the two-dimensional kernel of a viscoelasticity equation
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 1
\pages 28--45
\mathnet{http://mi.mathnet.ru/sjim1075}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.104}
\elib{https://elibrary.ru/item.asp?id=42811385}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 1
\pages 20--36
\crossref{https://doi.org/10.1134/S1990478920010044}
Linking options:
  • https://www.mathnet.ru/eng/sjim1075
  • https://www.mathnet.ru/eng/sjim/v23/i1/p28
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024