Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2020, Volume 23, Number 1, Pages 5–10
DOI: https://doi.org/10.33048/SIBJIM.2020.23.101
(Mi sjim1072)
 

A uniqueness theorem for an inverse kinematic seismic problem

Yu. E. Anikonov

Sobolev Institute of Mathematics SB RAS, pr. Akad. Koptyuga 4, Novosibirsk 630090, Russia
References:
Abstract: We prove some uniqueness theorem of a solution to an inverse kinematic seismic problem by using the Taylor series expansion.
Keywords: inverse kinematic seismic problem, Taylor series, recurrent formula.
Received: 24.05.2019
Revised: 31.10.2019
Accepted: 05.12.2019
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 1, Pages 1–5
DOI: https://doi.org/10.1134/S1990478920010019
Document Type: Article
UDC: 517.9
Language: Russian
Citation: Yu. E. Anikonov, “A uniqueness theorem for an inverse kinematic seismic problem”, Sib. Zh. Ind. Mat., 23:1 (2020), 5–10; J. Appl. Industr. Math., 14:1 (2020), 1–5
Citation in format AMSBIB
\Bibitem{Ani20}
\by Yu.~E.~Anikonov
\paper A uniqueness theorem for an inverse kinematic seismic problem
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 1
\pages 5--10
\mathnet{http://mi.mathnet.ru/sjim1072}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.101}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 1
\pages 1--5
\crossref{https://doi.org/10.1134/S1990478920010019}
Linking options:
  • https://www.mathnet.ru/eng/sjim1072
  • https://www.mathnet.ru/eng/sjim/v23/i1/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :67
    References:37
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024