Abstract:
We consider the class of linear systems of delay differential equations with periodic coefficients. Using a special class of Lyapunov — Krasovskiĭ functionals, we establish conditions for the exponential stability of the zero solution and obtain estimates characterizing the exponential decay rate of solutions at infinity.
Keywords:
time-delay system of neutral type, periodic coefficients, exponential stability, Lyapunov — Krasovskiĭ functional.
Citation:
I. I. Matveeva, “Estimates of the exponential decay of solutions to linear systems of neutral type with periodic coefficients”, Sib. Zh. Ind. Mat., 22:3 (2019), 96–103; J. Appl. Industr. Math., 13:3 (2019), 511–518
\Bibitem{Mat19}
\by I.~I.~Matveeva
\paper Estimates of the exponential decay of solutions to linear systems of neutral type with periodic coefficients
\jour Sib. Zh. Ind. Mat.
\yr 2019
\vol 22
\issue 3
\pages 96--103
\mathnet{http://mi.mathnet.ru/sjim1056}
\crossref{https://doi.org/10.33048/sibjim.2019.22.308
}
\elib{https://elibrary.ru/item.asp?id=41626650}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 3
\pages 511--518
\crossref{https://doi.org/10.1134/S1990478919030116}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071645028}
Linking options:
https://www.mathnet.ru/eng/sjim1056
https://www.mathnet.ru/eng/sjim/v22/i3/p96
This publication is cited in the following 6 articles:
I. I. Matveeva, “Estimates of Solutions for a Class of Nonautonomous Systems of Neutral Type with Concentrated and Distributed Delays”, Comput. Math. and Math. Phys., 64:8 (2024), 1796
I. I. Matveeva, “Ustoichivost reshenii odnogo klassa nelineinykh sistem integro-differentsialnykh uravnenii s zapazdyvaniem”, Chelyab. fiz.-matem. zhurn., 9:4 (2024), 609–621
I. I. Matveeva, “Estimates for solutions to a class of nonautonomous systems of neutral type with unbounded delay”, Siberian Math. J., 62:3 (2021), 468–481
I. I. Matveeva, “Estimates For Solutions to One Class of Nonlinear Nonautonomous Systems With Time-Varying Concentrated and Distributed Delays”, Sib. Electron. Math. Rep., 18:2 (2021), 1689–1697
G. V. Demidenko, I. I. Matveeva, Springer Proceedings in Mathematics & Statistics, 379, Functional Differential Equations and Applications, 2021, 145
I. I. Matveeva, “Estimates for exponential decay of solutions to one class of nonlinear systems of neutral type with periodic coefficients”, Comput. Math. Math. Phys., 60:4 (2020), 601–609