Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2019, Volume 22, Number 3, Pages 24–38
DOI: https://doi.org/10.33048/sibjim.2018.22.303
(Mi sjim1051)
 

This article is cited in 17 scientific papers (total in 17 papers)

The Miles Theorem and the first boundary value problem for the Taylor–Goldstein equation

A. A. Gavril'evaa, Yu. G. Gubarevbc, M. P. Lebedevd

a Larionov Institute of Physical and Technical Problems of the North SB RAS, ul. Oktyabr'skaya 1, 677891 Yakutsk
b Lavrentyev Institute of Hydrodynamics SB RAS, pr. Akad. Lavrentyeva 15, 630090 Novosibirsk
c Novosibirsk State University, ul. Pirogova 1, 630090 Novosibirsk
d Yakutsk Scientific Center, ul. Petrovskogo 2, 677000 Yakutsk
References:
Abstract: We study the problem of the linear stability of stationary plane-parallel shear flows of an inviscid stratified incompressible fluid in the gravity field between two fixed impermeable solid parallel infinite plates with respect to plane perturbations in the Boussinesq approximation and without it. For both cases, we construct some analytical examples of steady plane-parallel shear flows of an ideal density-heterogeneous incompressible fluid and small plane perturbations in the form of normal waves imposed on them, whose asymptotic behavior proves that these perturbations grow in time regardless of whether the well-known result of spectral stability theory (the Miles Theorem) is valid or not.
Keywords: stratified fluid, stationary flow, instability, small perturbation, Taylor–Goldstein equation, Miles Theorem, analytical solution, asymptotic expansion.
Received: 20.07.2018
Revised: 22.04.2019
Accepted: 13.06.2019
English version:
Journal of Applied and Industrial Mathematics, 2019, Volume 13, Issue 3, Pages 460–471
DOI: https://doi.org/10.1134/S1990478919030074
Bibliographic databases:
Document Type: Article
UDC: 532.5.013.4
Language: Russian
Citation: A. A. Gavril'eva, Yu. G. Gubarev, M. P. Lebedev, “The Miles Theorem and the first boundary value problem for the Taylor–Goldstein equation”, Sib. Zh. Ind. Mat., 22:3 (2019), 24–38; J. Appl. Industr. Math., 13:3 (2019), 460–471
Citation in format AMSBIB
\Bibitem{GavGubLeb19}
\by A.~A.~Gavril'eva, Yu.~G.~Gubarev, M.~P.~Lebedev
\paper The Miles Theorem and the first boundary value problem for the Taylor--Goldstein equation
\jour Sib. Zh. Ind. Mat.
\yr 2019
\vol 22
\issue 3
\pages 24--38
\mathnet{http://mi.mathnet.ru/sjim1051}
\crossref{https://doi.org/10.33048/sibjim.2018.22.303
}
\elib{https://elibrary.ru/item.asp?id=41625885}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 3
\pages 460--471
\crossref{https://doi.org/10.1134/S1990478919030074}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071622115}
Linking options:
  • https://www.mathnet.ru/eng/sjim1051
  • https://www.mathnet.ru/eng/sjim/v22/i3/p24
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :66
    References:56
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024