Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2019, Volume 22, Number 2, Pages 105–117
DOI: https://doi.org/10.33048/sibjim.2019.22.210
(Mi sjim1047)
 

This article is cited in 7 scientific papers (total in 7 papers)

A contact problem for a plate and a beam in presence of adhesion

A. I. Furtsev

Lavrentyev Institute of Hydrodynamics SB RAS, pr. Akad. Lavrentyeva 15, 630090 Novosibirsk
Full-text PDF (341 kB) Citations (7)
References:
Abstract: Under consideration is the problem of contact between a plate and a beam. It is assumed that no mutual penetration between the plate and the beam can occur, and so an appropriate nonpenetration condition is used. On the other hand, the adhesion of the bodies is taken into account which is characterized by a numerical adhesion parameter. We study the existence and uniqueness of a solution for the contact problem as well as the passage to the limit with respect to the adhesion parameter. The accompanying optimal control problem is investigated in which the adhesion parameter acts as a control parameter.
Keywords: contact, plate, beam, thin obstacle, nonpenetration condition, defect, adhesion, minimization problem, variational inequality, optimal control.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-10007_мк
Received: 17.11.2018
Revised: 17.11.2018
Accepted: 27.12.2018
English version:
Journal of Applied and Industrial Mathematics, 2019, Volume 13, Issue 2, Pages 208–218
DOI: https://doi.org/10.1134/S1990478919020030
Bibliographic databases:
Document Type: Article
UDC: 539.3:517.958
Language: Russian
Citation: A. I. Furtsev, “A contact problem for a plate and a beam in presence of adhesion”, Sib. Zh. Ind. Mat., 22:2 (2019), 105–117; J. Appl. Industr. Math., 13:2 (2019), 208–218
Citation in format AMSBIB
\Bibitem{Fur19}
\by A.~I.~Furtsev
\paper A contact problem for a plate and a beam in presence of adhesion
\jour Sib. Zh. Ind. Mat.
\yr 2019
\vol 22
\issue 2
\pages 105--117
\mathnet{http://mi.mathnet.ru/sjim1047}
\crossref{https://doi.org/10.33048/sibjim.2019.22.210}
\elib{https://elibrary.ru/item.asp?id=41637287}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 2
\pages 208--218
\crossref{https://doi.org/10.1134/S1990478919020030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067282632}
Linking options:
  • https://www.mathnet.ru/eng/sjim1047
  • https://www.mathnet.ru/eng/sjim/v22/i2/p105
  • This publication is cited in the following 7 articles:
    1. N. P. Lazarev, G. M. Semenova, E. S. Efimova, “Optimalnoe upravlenie vneshnimi nagruzkami v zadache o ravnovesii sostavnogo tela, kontaktiruyuschego s zhestkim vklyucheniem s ostroi kromkoi”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXIV», Voronezh, 3-9 maya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 230, VINITI RAN, M., 2023, 88–95  mathnet  crossref
    2. N. P. Lazarev, E. F. Sharin, E. S. Efimova, “Equilibrium Problem for an Inhomogeneous Kirchhoff–Love Plate Contacting with a Partially Delaminated Inclusion”, Lobachevskii J Math, 44:10 (2023), 4127  crossref
    3. Nyurgun Lazarev, Galina Semenova, “Optimal control of loads for an equilibrium problem describing a point contact of an elastic body with a sharp-shaped stiffener”, Z. Angew. Math. Phys., 73:5 (2022)  crossref
    4. E. M. Rudoy, H. Itou, N. P. Lazarev, “Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem”, J. Appl. Industr. Math., 15:1 (2021), 129–140  mathnet  mathnet  crossref  crossref  scopus
    5. E. Rudoy, “Asymptotic justification of models of plates containing inside hard thin inclusions”, Technologies, 8:4 (2020), 59  crossref  isi
    6. A. Furtsev, E. Rudoy, “Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates”, Int. J. Solids Struct., 202 (2020), 562–574  crossref  isi  scopus
    7. A. I. Furtsev, “the Unilateral Contact Problem For a Timoshenko Plate and a Thin Elastic Obstacle”, Sib. Electron. Math. Rep., 17 (2020), 364–379  mathnet  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :168
    References:49
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025