Abstract:
Mathematical simulation is carried out of the dynamics of an acute inflammatory process in the central zone of necrotic myocardial damage. Some mathematical model of the dynamics of the monocyte-macrophages and cytokines is presented and the numerical algorithm is developed for solving an inverse coefficient problem for a stiff nonlinear system of ordinary differential equations (ODEs). The methodological studies showed that the solution obtained by the genetic BGA algorithm agrees well with the solutions obtained by the gradient and ravine methods. Adequacy of the simulation results is confirmed by their qualitative and quantitative agreement with the laboratory data on the dynamics of inflammatory process in the case of infarction in the left ventricle of the heart of a mouse.
Keywords:
myocardial infarction, mathematical simulation, direct and inverse problems, genetic algorithm, necrosis, inflammation, M1 and M2 macrophages, cytokine, IL-1, IL-10, TNF-α.
Citation:
O. F. Voropaeva, Ch. A. Tsgoev, “A numerical model of inflammation dynamics in the core of myocardial infarction”, Sib. Zh. Ind. Mat., 22:2 (2019), 13–26; J. Appl. Industr. Math., 13:2 (2019), 372–383
\Bibitem{VorTsg19}
\by O.~F.~Voropaeva, Ch.~A.~Tsgoev
\paper A numerical model of inflammation dynamics in the core of myocardial infarction
\jour Sib. Zh. Ind. Mat.
\yr 2019
\vol 22
\issue 2
\pages 13--26
\mathnet{http://mi.mathnet.ru/sjim1039}
\crossref{https://doi.org/10.33048/sibjim.2019.22.202}
\elib{https://elibrary.ru/item.asp?id=41685847}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 2
\pages 372--383
\crossref{https://doi.org/10.1134/S1990478919020182}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067391350}
Linking options:
https://www.mathnet.ru/eng/sjim1039
https://www.mathnet.ru/eng/sjim/v22/i2/p13
This publication is cited in the following 16 articles:
Mehtap Lafci Büyükkahraman, Houjia Chen, Benito M. Chen-Charpentier, Jun Liao, Hristo V. Kojouharov, “A Mathematical Exploration of the Effects of Ischemia-Reperfusion Injury After a Myocardial Infarction”, Bioengineering, 12:2 (2025), 177
William E. Schiesser, Modeling of Post-Myocardial Infarction, 2024, 1
Modeling of Post-Myocardial Infarction, 2024, vii
O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda pri mnogososudistom porazhenii koronarnogo rusla. I. Analiz nekotorykh modelnykh stsenariev”, Matem. biologiya i bioinform., 19:1 (2024), 183–211
O.F. Voropaeva, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 10, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 2024
O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda pri mnogososudistom porazhenii koronarnogo rusla. II. Zakonomernosti formirovaniya krupnogo ochaga povrezhdeniya i strukturoobrazovaniya”, Matem. biologiya i bioinform., 19:2 (2024), 497–532
O. F. Voropaeva, Ch. A. Tsgoev, “Numerical modelling of myocardial infarction. II. Analysis of macrophage polarization mechanism as a therapeutic target”, Mat. Biolog. Bioinform., 18:2 (2023), 367–404
MEHTAP LAFCI BÜYÜKKAHRAMAN, BENITO M. CHEN-CHARPENTIER, JUN LIAO, HRISTO V. KOJOUHAROV, “MATHEMATICAL MODELING OF STEM CELL THERAPY FOR LEFT VENTRICULAR REMODELING AFTER MYOCARDIAL INFARCTION”, J. Mech. Med. Biol., 23:06 (2023)
O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda. I. Analiz prostranstvenno-vremennykh aspektov razvitiya mestnoi vospalitelnoi reaktsii”, Matem. biologiya i bioinform., 18:1 (2023), 49–71
M. V. Polovinkina, “O nekotorykh osobennostyakh diffuzionno-logisticheskikh modelei”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 207, VINITI RAN, M., 2022, 101–106
M. V. Polovinkina, I. P. Polovinkin, “On the Stability of Stationary States in Diffusion Models in Biology and Humanities”, Lobachevskii J Math, 43:6 (2022), 1389
O. F. Voropaeva, Ch. A. Tsgoev, Yu. I. Shokin, “Numerical simulation of the inflammatory phase of myocardial infarction”, J. Appl. Mech. Tech. Phys., 62:3 (2021), 441–450
O. I. Krivorotko, S. I. Kabanikhin, M. I. Sosnovskaya, D. V. Andornaya, “Sensitivity and identifiability analysis of COVID-19 pandemic models”, Vavilovskii Zhurnal Genet. Sel., 25:1 (2021), 82–91
M V Polovinkina, “On the effect of transition from a model with concentrated parameters to a model with distributed parameters”, J. Phys.: Conf. Ser., 1902:1 (2021), 012041
O. F. Voropaeva, T. V. Bayadilov, “Mathematical model of the aseptic inflammation dynamics”, J. Appl. Industr. Math., 14:4 (2020), 779–791
Ch. A. Tsgoev, O. F. Voropaeva, Yu. I. Shokin, “Mathematical modelling of acute phase of myocardial infarction”, Russ. J. Numer. Anal. Math. Model, 35:2 (2020), 111–126