Processing math: 100%
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2019, Volume 22, Number 2, Pages 13–26
DOI: https://doi.org/10.33048/sibjim.2019.22.202
(Mi sjim1039)
 

This article is cited in 16 scientific papers (total in 16 papers)

A numerical model of inflammation dynamics in the core of myocardial infarction

O. F. Voropaevaa, Ch. A. Tsgoevba

a Novosibirsk State University, ul. Pirogova 1, 630090 Novosibirsk
b Institute of Computational Technologies SB RAS, pr. Acad. Lavrentyeva 6, 630090 Novosibirsk
References:
Abstract: Mathematical simulation is carried out of the dynamics of an acute inflammatory process in the central zone of necrotic myocardial damage. Some mathematical model of the dynamics of the monocyte-macrophages and cytokines is presented and the numerical algorithm is developed for solving an inverse coefficient problem for a stiff nonlinear system of ordinary differential equations (ODEs). The methodological studies showed that the solution obtained by the genetic BGA algorithm agrees well with the solutions obtained by the gradient and ravine methods. Adequacy of the simulation results is confirmed by their qualitative and quantitative agreement with the laboratory data on the dynamics of inflammatory process in the case of infarction in the left ventricle of the heart of a mouse.
Keywords: myocardial infarction, mathematical simulation, direct and inverse problems, genetic algorithm, necrosis, inflammation, M1 and M2 macrophages, cytokine, IL-1, IL-10, TNF-α.
Received: 04.12.2018
Revised: 24.12.2018
Accepted: 27.12.2018
English version:
Journal of Applied and Industrial Mathematics, 2019, Volume 13, Issue 2, Pages 372–383
DOI: https://doi.org/10.1134/S1990478919020182
Bibliographic databases:
Document Type: Article
UDC: 519.6:51.76
Language: Russian
Citation: O. F. Voropaeva, Ch. A. Tsgoev, “A numerical model of inflammation dynamics in the core of myocardial infarction”, Sib. Zh. Ind. Mat., 22:2 (2019), 13–26; J. Appl. Industr. Math., 13:2 (2019), 372–383
Citation in format AMSBIB
\Bibitem{VorTsg19}
\by O.~F.~Voropaeva, Ch.~A.~Tsgoev
\paper A numerical model of inflammation dynamics in the core of myocardial infarction
\jour Sib. Zh. Ind. Mat.
\yr 2019
\vol 22
\issue 2
\pages 13--26
\mathnet{http://mi.mathnet.ru/sjim1039}
\crossref{https://doi.org/10.33048/sibjim.2019.22.202}
\elib{https://elibrary.ru/item.asp?id=41685847}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 2
\pages 372--383
\crossref{https://doi.org/10.1134/S1990478919020182}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067391350}
Linking options:
  • https://www.mathnet.ru/eng/sjim1039
  • https://www.mathnet.ru/eng/sjim/v22/i2/p13
  • This publication is cited in the following 16 articles:
    1. Mehtap Lafci Büyükkahraman, Houjia Chen, Benito M. Chen-Charpentier, Jun Liao, Hristo V. Kojouharov, “A Mathematical Exploration of the Effects of Ischemia-Reperfusion Injury After a Myocardial Infarction”, Bioengineering, 12:2 (2025), 177  crossref
    2. William E. Schiesser, Modeling of Post-Myocardial Infarction, 2024, 1  crossref
    3. Modeling of Post-Myocardial Infarction, 2024, vii  crossref
    4. O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda pri mnogososudistom porazhenii koronarnogo rusla. I. Analiz nekotorykh modelnykh stsenariev”, Matem. biologiya i bioinform., 19:1 (2024), 183–211  mathnet  crossref  elib
    5. O.F. Voropaeva, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 10, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 2024  crossref
    6. O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda pri mnogososudistom porazhenii koronarnogo rusla. II. Zakonomernosti formirovaniya krupnogo ochaga povrezhdeniya i strukturoobrazovaniya”, Matem. biologiya i bioinform., 19:2 (2024), 497–532  mathnet  crossref  elib
    7. O. F. Voropaeva, Ch. A. Tsgoev, “Numerical modelling of myocardial infarction. II. Analysis of macrophage polarization mechanism as a therapeutic target”, Mat. Biolog. Bioinform., 18:2 (2023), 367–404  mathnet  mathnet  crossref
    8. MEHTAP LAFCI BÜYÜKKAHRAMAN, BENITO M. CHEN-CHARPENTIER, JUN LIAO, HRISTO V. KOJOUHAROV, “MATHEMATICAL MODELING OF STEM CELL THERAPY FOR LEFT VENTRICULAR REMODELING AFTER MYOCARDIAL INFARCTION”, J. Mech. Med. Biol., 23:06 (2023)  crossref
    9. O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda. I. Analiz prostranstvenno-vremennykh aspektov razvitiya mestnoi vospalitelnoi reaktsii”, Matem. biologiya i bioinform., 18:1 (2023), 49–71  mathnet  crossref
    10. M. V. Polovinkina, “O nekotorykh osobennostyakh diffuzionno-logisticheskikh modelei”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 207, VINITI RAN, M., 2022, 101–106  mathnet  crossref
    11. M. V. Polovinkina, I. P. Polovinkin, “On the Stability of Stationary States in Diffusion Models in Biology and Humanities”, Lobachevskii J Math, 43:6 (2022), 1389  crossref
    12. O. F. Voropaeva, Ch. A. Tsgoev, Yu. I. Shokin, “Numerical simulation of the inflammatory phase of myocardial infarction”, J. Appl. Mech. Tech. Phys., 62:3 (2021), 441–450  crossref  mathscinet  isi  scopus
    13. O. I. Krivorotko, S. I. Kabanikhin, M. I. Sosnovskaya, D. V. Andornaya, “Sensitivity and identifiability analysis of COVID-19 pandemic models”, Vavilovskii Zhurnal Genet. Sel., 25:1 (2021), 82–91  crossref  mathscinet  isi  scopus
    14. M V Polovinkina, “On the effect of transition from a model with concentrated parameters to a model with distributed parameters”, J. Phys.: Conf. Ser., 1902:1 (2021), 012041  crossref
    15. O. F. Voropaeva, T. V. Bayadilov, “Mathematical model of the aseptic inflammation dynamics”, J. Appl. Industr. Math., 14:4 (2020), 779–791  mathnet  crossref  crossref  elib
    16. Ch. A. Tsgoev, O. F. Voropaeva, Yu. I. Shokin, “Mathematical modelling of acute phase of myocardial infarction”, Russ. J. Numer. Anal. Math. Model, 35:2 (2020), 111–126  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:428
    Full-text PDF :168
    References:52
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025