Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2019, Volume 22, Number 1, Pages 53–62
DOI: https://doi.org/10.33048/sibjim.2019.22.106
(Mi sjim1032)
 

This article is cited in 2 scientific papers (total in 2 papers)

Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack

N. P. Lazarev, G. M. Semenova

North-Eastern Federal University, ul. Kulakovskogo 48, 677000 Yakutsk
Full-text PDF (250 kB) Citations (2)
References:
Abstract: Under study is some two-dimensional model describing equilibrium of a composite solid with a thin rigid inclusion and a crack. A boundary condition of Signorini's type is prescribed on the crack curve. For a family of corresponding variational problems, the dependence is analyzed of their solutions on the parameter characterizing the location of the rigid inclusion. The existence of solution of the optimal control problem is proved. For this problem, the quality functional is defined with the help of an arbitrary continuous functional on the solution space, while the location of the inclusion is chosen as the control parameter.
Keywords: variational inequality, optimal control problem, nonpenetration condition, nonlinear boundary conditions, crack, rigid inclusion.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-140003_р_а
Received: 12.09.2018
Revised: 12.09.2018
Accepted: 15.12.2018
English version:
Journal of Applied and Industrial Mathematics, 2019, Volume 13, Issue 1, Pages 76–84
DOI: https://doi.org/10.1134/S1990478919010095
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: Russian
Citation: N. P. Lazarev, G. M. Semenova, “Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack”, Sib. Zh. Ind. Mat., 22:1 (2019), 53–62; J. Appl. Industr. Math., 13:1 (2019), 76–84
Citation in format AMSBIB
\Bibitem{LazSem19}
\by N.~P.~Lazarev, G.~M.~Semenova
\paper Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack
\jour Sib. Zh. Ind. Mat.
\yr 2019
\vol 22
\issue 1
\pages 53--62
\mathnet{http://mi.mathnet.ru/sjim1032}
\crossref{https://doi.org/10.33048/sibjim.2019.22.106}
\elib{https://elibrary.ru/item.asp?id=38692166}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 1
\pages 76--84
\crossref{https://doi.org/10.1134/S1990478919010095}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064949494}
Linking options:
  • https://www.mathnet.ru/eng/sjim1032
  • https://www.mathnet.ru/eng/sjim/v22/i1/p53
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:316
    Full-text PDF :76
    References:34
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024