Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2018, Volume 21, Number 4, Pages 121–136
DOI: https://doi.org/10.17377/sibjim.2018.21.410
(Mi sjim1026)
 

This article is cited in 2 scientific papers (total in 2 papers)

Radially symmetric solutions of the $p$-Laplace equation with gradient terms

Ar. S. Tersenovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Full-text PDF (295 kB) Citations (2)
References:
Abstract: We consider the Dirichlet problem for the $p$-Laplace equation with nonlinear gradient terms. In particular, these gradient terms cannot satisfy the Bernstein–Nagumo conditions. We obtain some sufficient conditions that guarantee the existence of a global bounded radially symmetric solution without any restrictions on the growth of the gradient term. Also we present some conditions on the function simulating the mass forces, which allow us to obtain a bounded radially symmetric solution under presence of an arbitrary nonlinear source.
Keywords: radially symmetric solution, $p$-Laplace equation, Dirichlet problem, gradient nonlinearity.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00649
The author was partially supported by the Russian Foundation for Basic Research (project no. 18-01-00649).
Received: 27.06.2018
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 4, Pages 770–784
DOI: https://doi.org/10.1134/S1990478918040178
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: Ar. S. Tersenov, “Radially symmetric solutions of the $p$-Laplace equation with gradient terms”, Sib. Zh. Ind. Mat., 21:4 (2018), 121–136; J. Appl. Industr. Math., 12:4 (2018), 770–784
Citation in format AMSBIB
\Bibitem{Ter18}
\by Ar.~S.~Tersenov
\paper Radially symmetric solutions of the $p$-Laplace equation with gradient terms
\jour Sib. Zh. Ind. Mat.
\yr 2018
\vol 21
\issue 4
\pages 121--136
\mathnet{http://mi.mathnet.ru/sjim1026}
\crossref{https://doi.org/10.17377/sibjim.2018.21.410}
\elib{https://elibrary.ru/item.asp?id=37304729}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 4
\pages 770--784
\crossref{https://doi.org/10.1134/S1990478918040178}
\elib{https://elibrary.ru/item.asp?id=38668722}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058125998}
Linking options:
  • https://www.mathnet.ru/eng/sjim1026
  • https://www.mathnet.ru/eng/sjim/v21/i4/p121
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024