Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2018, Volume 21, Number 4, Pages 96–109
DOI: https://doi.org/10.17377/sibjim.2018.21.408
(Mi sjim1024)
 

This article is cited in 3 scientific papers (total in 3 papers)

Regularization of the solution of the Cauchy problem: the quasi-reversibility method

V. G. Romanova, T. V. Buguevaab, V. A. Dedokab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Full-text PDF (335 kB) Citations (3)
References:
Abstract: Some regularization algorithm is proposed related to the problem of continuation of the wave field from the planar boundary into the half-plane. We consider a hyperbolic equation whose main part coincideswith the wave operator, whereas the lowest term contains a coefficient depending on the two spatial variables. The regularization algorithm is based on the quasi-reversibility method proposed by Lattes and Lions. We consider the solution of an auxiliary regularizing equation with a small parameter; the existence, the uniqueness, and the stability of the solution in the Cauchy data are proved. The convergence is substantiated of this solution to the exact solution as the small parameter vanishes. A solution of an auxiliary problem is constructed with the Cauchy data having some error. It is proved that, for a suitable choice of a small parameter, the approximate solution converges to the exact solution.
Keywords: Cauchy problem, continuation of the wave field, regularization.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations II.1, 0314-2018-0009
The authors were supported by the Complex Program II.1 of Basic Scientific Research of the Siberian Branch of the Russian Academy of Sciences (project no. 0314-2018-0009).
Received: 18.06.2018
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 4, Pages 716–728
DOI: https://doi.org/10.1134/S1990478918040129
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: V. G. Romanov, T. V. Bugueva, V. A. Dedok, “Regularization of the solution of the Cauchy problem: the quasi-reversibility method”, Sib. Zh. Ind. Mat., 21:4 (2018), 96–109; J. Appl. Industr. Math., 12:4 (2018), 716–728
Citation in format AMSBIB
\Bibitem{RomBugDed18}
\by V.~G.~Romanov, T.~V.~Bugueva, V.~A.~Dedok
\paper Regularization of the solution of the Cauchy problem: the quasi-reversibility method
\jour Sib. Zh. Ind. Mat.
\yr 2018
\vol 21
\issue 4
\pages 96--109
\mathnet{http://mi.mathnet.ru/sjim1024}
\crossref{https://doi.org/10.17377/sibjim.2018.21.408}
\elib{https://elibrary.ru/item.asp?id=37304727}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 4
\pages 716--728
\crossref{https://doi.org/10.1134/S1990478918040129}
\elib{https://elibrary.ru/item.asp?id=38668772}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058135053}
Linking options:
  • https://www.mathnet.ru/eng/sjim1024
  • https://www.mathnet.ru/eng/sjim/v21/i4/p96
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :105
    References:52
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024