Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2018, Volume 21, Number 4, Pages 39–50
DOI: https://doi.org/10.17377/sibjim.2018.21.404
(Mi sjim1020)
 

On stability of the inverted pendulum motion with a vibrating suspension point

G. V. Demidenkoab, A. V. Dulepovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
References:
Abstract: Under study is the stability of the inverted pendulum motion whose suspension point vibrates according to a sinusoidal law along a straight line having a small angle with the vertical. Formulating and using the contracting mapping principle and the criterion of asymptotic stability in terms of solvability of a special boundary value problem for the Lyapunov differential equation, we prove that the pendulum performs stable periodic movements under sufficiently small amplitude of oscillations of the suspension point and sufficiently high frequency of oscillations.
Keywords: inverted pendulum, asymptotic stability, Lyapunov differential equation, contracting mapping principle.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00592
18-31-00408
The authors were supported by the Russian Foundation for Basic Research (projects nos. 16-01-00592 and 18-31-00408).
Received: 29.06.2018
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 4, Pages 607–618
DOI: https://doi.org/10.1134/S1990478918040026
Bibliographic databases:
Document Type: Article
UDC: 517.925.44
Language: Russian
Citation: G. V. Demidenko, A. V. Dulepova, “On stability of the inverted pendulum motion with a vibrating suspension point”, Sib. Zh. Ind. Mat., 21:4 (2018), 39–50; J. Appl. Industr. Math., 12:4 (2018), 607–618
Citation in format AMSBIB
\Bibitem{DemDul18}
\by G.~V.~Demidenko, A.~V.~Dulepova
\paper On stability of the inverted pendulum motion with a~vibrating suspension point
\jour Sib. Zh. Ind. Mat.
\yr 2018
\vol 21
\issue 4
\pages 39--50
\mathnet{http://mi.mathnet.ru/sjim1020}
\crossref{https://doi.org/10.17377/sibjim.2018.21.404}
\elib{https://elibrary.ru/item.asp?id=37304722}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 4
\pages 607--618
\crossref{https://doi.org/10.1134/S1990478918040026}
\elib{https://elibrary.ru/item.asp?id=38655713}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058104576}
Linking options:
  • https://www.mathnet.ru/eng/sjim1020
  • https://www.mathnet.ru/eng/sjim/v21/i4/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :144
    References:44
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024