Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2018, Volume 21, Number 3, Pages 50–59
DOI: https://doi.org/10.17377/sibjim.2018.21.305
(Mi sjim1010)
 

This article is cited in 14 scientific papers (total in 14 papers)

Reconstruction of permittivity from the modulus of a scattered electric field

A. L. Karchevsky, V. A. Dedok

Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
References:
Abstract: We present a numerical algorithm for determining the inhomogeneities of permittivity from the strength modulus of a scattered electric field. The algorithm was tested on simulated noisy data and revealed its practical operability.
Keywords: phase-free inverse problem, Maxwell's equations, permittivity, residual functional.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00120-a
The authors were supported by the Russian Foundation for Basic Research (project no. 17-01-00120-a).
Received: 15.06.2018
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 3, Pages 470–478
DOI: https://doi.org/10.1134/S1990478918030079
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: A. L. Karchevsky, V. A. Dedok, “Reconstruction of permittivity from the modulus of a scattered electric field”, Sib. Zh. Ind. Mat., 21:3 (2018), 50–59; J. Appl. Industr. Math., 12:3 (2018), 470–478
Citation in format AMSBIB
\Bibitem{KarDed18}
\by A.~L.~Karchevsky, V.~A.~Dedok
\paper Reconstruction of permittivity from the modulus of a~scattered electric field
\jour Sib. Zh. Ind. Mat.
\yr 2018
\vol 21
\issue 3
\pages 50--59
\mathnet{http://mi.mathnet.ru/sjim1010}
\crossref{https://doi.org/10.17377/sibjim.2018.21.305}
\elib{https://elibrary.ru/item.asp?id=36460641}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 3
\pages 470--478
\crossref{https://doi.org/10.1134/S1990478918030079}
\elib{https://elibrary.ru/item.asp?id=35737501}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052241262}
Linking options:
  • https://www.mathnet.ru/eng/sjim1010
  • https://www.mathnet.ru/eng/sjim/v21/i3/p50
  • This publication is cited in the following 14 articles:
    1. Y. R. Ashrafova, “An Inverse Parametric Problem for a Large System of Differential Equations with Nonlocal Boundary Conditions”, Numer. Analys. Appl., 18:1 (2025), 1  crossref
    2. E. B. Sibiryakov, “Coefficient inverse problem for the Helmholtz equation”, Russian Journal of geophysical technologies, 2023, no. 3, 77  crossref
    3. D. K. Durdiev, Sh. B. Merazhova, “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa s operatorom Besselya”, Sib. zhurn. industr. matem., 25:3 (2022), 14–24  mathnet  crossref  mathscinet
    4. D. K. Durdiev, Sh. B. Merajova, “Inverse Problem for an Equation of Mixed Parabolic–Hyperbolic Type with a Bessel Operator”, J. Appl. Ind. Math., 16:3 (2022), 394  crossref
    5. K. R. Aida-zade, Y. R. Ashrafova, “Control of effects in the right-hand sides of a large ODE system of a block structure and optimization of sources in unseparated boundary conditions”, Num. Anal. Appl., 14:3 (2021), 201–219  mathnet  crossref  crossref  isi
    6. I. Golgeleyen, “An inverse problem for a generalized kinetic equation in semi-geodesic coordinates”, J. Geom. Phys., 168 (2021), 104318  crossref  mathscinet  isi  scopus
    7. T. Truong, D.-L. Nguyen, M. V. Klibanov, “Convexification numerical algorithm for a 2D inverse scattering problem with backscatter data”, Inverse Probl. Sci. Eng., 29:13 (2021), 2656–2675  crossref  mathscinet  isi  scopus
    8. A. L. Karchevsky, L. A. Nazarov, L. A. Nazarova, “New method to interpret the ‘canister test’ data for determining kinetic parameters of coalbed gas: theory and experiment”, Inverse Probl. Sci. Eng., 29:13 (2021), 2551–2560  crossref  isi  scopus
    9. V. G. Romanov, “Problem of determining the anisotropic conductivity in electrodynamic equations”, Dokl. Math., 103:1 (2021), 44–46  mathnet  crossref  crossref  zmath  elib
    10. V. G. Romanov, “Phaseless problem of determination of anisotropic conductivity in electrodynamic equations”, Dokl. Math., 104:3 (2021), 385–389  mathnet  crossref  crossref  zmath  elib
    11. M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak, “Non-iterative two-step method for solving scalar inverse 3D diffraction problem”, Inverse Probl. Sci. Eng., 28:10 (2020), 1474–1492  crossref  mathscinet  zmath  isi  scopus
    12. V. G. Romanov, “Phaseless inverse problems for Schrödinger, Helmholtz, and Maxwell equations”, Comput. Math. Math. Phys., 60:6 (2020), 1045–1062  mathnet  crossref  crossref  isi  elib
    13. V. A. Dedok, A. L. Karchevsky, V. G. Romanov, “A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field”, J. Appl. Industr. Math., 13:3 (2019), 436–446  mathnet  crossref  crossref  elib
    14. Romanov V.G. Karchevsky A.L., “Determination of Permittivity and Conductivity of Medium in a Vicinity of a Well Having Complex Profile”, Eurasian J. Math. Comput. Appl., 6:4 (2018), 62–72  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :88
    References:62
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025