Abstract:
We present a numerical algorithm for determining the inhomogeneities of permittivity from the strength modulus of a scattered electric field. The algorithm was tested on simulated noisy data and revealed its practical operability.
Citation:
A. L. Karchevsky, V. A. Dedok, “Reconstruction of permittivity from the modulus of a scattered electric field”, Sib. Zh. Ind. Mat., 21:3 (2018), 50–59; J. Appl. Industr. Math., 12:3 (2018), 470–478
\Bibitem{KarDed18}
\by A.~L.~Karchevsky, V.~A.~Dedok
\paper Reconstruction of permittivity from the modulus of a~scattered electric field
\jour Sib. Zh. Ind. Mat.
\yr 2018
\vol 21
\issue 3
\pages 50--59
\mathnet{http://mi.mathnet.ru/sjim1010}
\crossref{https://doi.org/10.17377/sibjim.2018.21.305}
\elib{https://elibrary.ru/item.asp?id=36460641}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 3
\pages 470--478
\crossref{https://doi.org/10.1134/S1990478918030079}
\elib{https://elibrary.ru/item.asp?id=35737501}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052241262}
Linking options:
https://www.mathnet.ru/eng/sjim1010
https://www.mathnet.ru/eng/sjim/v21/i3/p50
This publication is cited in the following 14 articles:
Y. R. Ashrafova, “An Inverse Parametric Problem for a Large System of Differential Equations with Nonlocal Boundary Conditions”, Numer. Analys. Appl., 18:1 (2025), 1
E. B. Sibiryakov, “Coefficient inverse problem for the Helmholtz equation”, Russian Journal of geophysical technologies, 2023, no. 3, 77
D. K. Durdiev, Sh. B. Merazhova, “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa s operatorom Besselya”, Sib. zhurn. industr. matem., 25:3 (2022), 14–24
D. K. Durdiev, Sh. B. Merajova, “Inverse Problem for an Equation of Mixed Parabolic–Hyperbolic Type with a Bessel Operator”, J. Appl. Ind. Math., 16:3 (2022), 394
K. R. Aida-zade, Y. R. Ashrafova, “Control of effects in the right-hand sides of a large ODE system of a block structure and optimization of sources in unseparated boundary conditions”, Num. Anal. Appl., 14:3 (2021), 201–219
I. Golgeleyen, “An inverse problem for a generalized kinetic equation in semi-geodesic coordinates”, J. Geom. Phys., 168 (2021), 104318
T. Truong, D.-L. Nguyen, M. V. Klibanov, “Convexification numerical algorithm for a 2D inverse scattering problem with backscatter data”, Inverse Probl. Sci. Eng., 29:13 (2021), 2656–2675
A. L. Karchevsky, L. A. Nazarov, L. A. Nazarova, “New method to interpret the ‘canister test’ data for determining kinetic parameters of coalbed gas: theory and experiment”, Inverse Probl. Sci. Eng., 29:13 (2021), 2551–2560
V. G. Romanov, “Problem of determining the anisotropic conductivity in electrodynamic equations”, Dokl. Math., 103:1 (2021), 44–46
V. G. Romanov, “Phaseless problem of determination of anisotropic conductivity in electrodynamic equations”, Dokl. Math., 104:3 (2021), 385–389
M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak, “Non-iterative two-step method for solving scalar inverse 3D diffraction problem”, Inverse Probl. Sci. Eng., 28:10 (2020), 1474–1492
V. G. Romanov, “Phaseless inverse problems for Schrödinger, Helmholtz, and Maxwell equations”, Comput. Math. Math. Phys., 60:6 (2020), 1045–1062
V. A. Dedok, A. L. Karchevsky, V. G. Romanov, “A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field”, J. Appl. Industr. Math., 13:3 (2019), 436–446
Romanov V.G. Karchevsky A.L., “Determination of Permittivity and Conductivity of Medium in a Vicinity of a Well Having Complex Profile”, Eurasian J. Math. Comput. Appl., 6:4 (2018), 62–72