Abstract:
We present a 0.5-approximation algorithm for the Multiple Knapsack Problem (MKP). The algorithm uses the ordering of knapsacks according to the nondecreasing of size and the two orderings of items: in nonincreasing utility order and in nonincreasing order of the utility/size ratio. These orderings create two lexicographic orderings on A×B (here A is the set of knapsacks and B is the set of indivisible items). Based on each of these lexicographic orderings, the algorithm creates a feasible solution to the MKP by looking through the pairs (a,b)∈A×B in the corresponding order and placing item b into knapsack a if this item is not placed yet and there is enough free space in the knapsack. The algorithm chooses the best of the two obtained solutions. This algorithm is 0.5-approximate and has runtime O(mn) (without sorting), where m and n are the sizes of A and B correspondingly.
Citation:
A. B. Khutoretskii, S. V. Bredikhin, A. A. Zamyatin, “A lexicographic 0,5-approximation algorithm for the multiple knapsack problem”, Sib. Zh. Ind. Mat., 21:2 (2018), 108–121; J. Appl. Industr. Math., 12:2 (2018), 264–277
\Bibitem{KhuBreZam18}
\by A.~B.~Khutoretskii, S.~V.~Bredikhin, A.~A.~Zamyatin
\paper A lexicographic $0,5$-approximation algorithm for the multiple knapsack problem
\jour Sib. Zh. Ind. Mat.
\yr 2018
\vol 21
\issue 2
\pages 108--121
\mathnet{http://mi.mathnet.ru/sjim1004}
\crossref{https://doi.org/10.17377/sibjim.2018.21.210}
\elib{https://elibrary.ru/item.asp?id=35459107}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 2
\pages 264--277
\crossref{https://doi.org/10.1134/S1990478918020072}
\elib{https://elibrary.ru/item.asp?id=35510834}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047788519}
Linking options:
https://www.mathnet.ru/eng/sjim1004
https://www.mathnet.ru/eng/sjim/v21/i2/p108
This publication is cited in the following 3 articles:
Valentina Cacchiani, Manuel Iori, Alberto Locatelli, Silvano Martello, “Knapsack problems — An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems”, Computers & Operations Research, 143 (2022), 105693
A. Khutoretskii, S. Bredikhin, “A greedy algorithm for jobs allocation in a multiprocessor system”, 2019 15Th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS 2019), IEEE, 2019, 82–85
Alexandre Khutoretskii, Sergei Bredikhin, 2019 15th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS), 2019, 82