Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2018, Volume 21, Number 2, Pages 66–78
DOI: https://doi.org/10.17377/sibjim.2018.21.206
(Mi sjim1000)
 

This article is cited in 8 scientific papers (total in 8 papers)

Problems on thin inclusions in a two-dimensional viscoelastic body

T. S. Popova

North-Eastern Federal University, 58 Belinskogo str., 677000 Yakutsk
Full-text PDF (258 kB) Citations (8)
References:
Abstract: Under study are the equilibrium problems for a two-dimensional viscoelastic body with delaminated thin inclusions in the cases of elastic and rigid inclusions. Both variational and differential formulations of the problems with nonlinear boundary conditions are presented; their unique solvability is substantiated. For the case of a thin elastic inclusion modelled as a Bernoulli–Euler beam, we consider the passage to the limit as the rigidity parameter of the inclusion tends to infinity. In the limit it is the problem about a thin rigid inclusion. Relationship is established between the problems about thin rigid inclusions and the previously considered problems about volume rigid inclusions. The corresponding passage to the limit is justified in the case of inclusions without delamination.
Keywords: variational inequality, viscoelasticity, nonpenetration conditions, elastic inclusion, rigid inclusion, thin inclusion, nonlinear boundary conditions.
Received: 23.11.2017
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 2, Pages 313–324
DOI: https://doi.org/10.1134/S1990478918020114
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: T. S. Popova, “Problems on thin inclusions in a two-dimensional viscoelastic body”, Sib. Zh. Ind. Mat., 21:2 (2018), 66–78; J. Appl. Industr. Math., 12:2 (2018), 313–324
Citation in format AMSBIB
\Bibitem{Pop18}
\by T.~S.~Popova
\paper Problems on thin inclusions in a~two-dimensional viscoelastic body
\jour Sib. Zh. Ind. Mat.
\yr 2018
\vol 21
\issue 2
\pages 66--78
\mathnet{http://mi.mathnet.ru/sjim1000}
\crossref{https://doi.org/10.17377/sibjim.2018.21.206}
\elib{https://elibrary.ru/item.asp?id=35459102}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 2
\pages 313--324
\crossref{https://doi.org/10.1134/S1990478918020114}
\elib{https://elibrary.ru/item.asp?id=35484260}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047786318}
Linking options:
  • https://www.mathnet.ru/eng/sjim1000
  • https://www.mathnet.ru/eng/sjim/v21/i2/p66
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :78
    References:51
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024