Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 017, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.017
(Mi sigma998)
 

On the Killing form of Lie Algebras in Symmetric Ribbon Categories

Igor Buchberger, Jürgen Fuchs

Teoretisk fysik, Karlstads Universitet, Universitetsgatan 21, S–65188 Karlstad, Sweden
References:
Abstract: As a step towards the structure theory of Lie algebras in symmetric monoidal categories we establish results involving the Killing form. The proper categorical setting for discussing these issues are symmetric ribbon categories.
Keywords: Lie algebra; monoidal category; ribbon category; Killing form; Lie superalgebra.
Received: September 30, 2014; in final form February 20, 2015; Published online February 26, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Igor Buchberger, Jürgen Fuchs, “On the Killing form of Lie Algebras in Symmetric Ribbon Categories”, SIGMA, 11 (2015), 017, 21 pp.
Citation in format AMSBIB
\Bibitem{BucFuc15}
\by Igor~Buchberger, J\"urgen~Fuchs
\paper On the Killing form of Lie Algebras in Symmetric Ribbon Categories
\jour SIGMA
\yr 2015
\vol 11
\papernumber 017
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma998}
\crossref{https://doi.org/10.3842/SIGMA.2015.017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3322335}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350561700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84923327653}
Linking options:
  • https://www.mathnet.ru/eng/sigma998
  • https://www.mathnet.ru/eng/sigma/v11/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :43
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024