Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 015, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.015
(Mi sigma996)
 

This article is cited in 3 scientific papers (total in 3 papers)

Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry

Howard S. Cohla, Rebekah M. Palmerb

a Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8910, USA
b Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA
Full-text PDF (503 kB) Citations (3)
References:
Abstract: For a fundamental solution of Laplace's equation on the $R$-radius $d$-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hyperspherical geometry in geodesic polar coordinates. From this expansion in three-dimensions, we derive an addition theorem for the azimuthal Fourier coefficients of a fundamental solution of Laplace's equation on the 3-sphere. Applications of our expansions are given, namely closed-form solutions to Poisson's equation with uniform density source distributions. The Newtonian potential is obtained for the 2-disc on the 2-sphere and 3-ball and circular curve segment on the 3-sphere. Applications are also given to the superintegrable Kepler–Coulomb and isotropic oscillator potentials.
Keywords: fundamental solution; hypersphere; Fourier expansion; Gegenbauer expansion.
Received: May 20, 2014; in final form February 9, 2015; Published online February 14, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Howard S. Cohl, Rebekah M. Palmer, “Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry”, SIGMA, 11 (2015), 015, 23 pp.
Citation in format AMSBIB
\Bibitem{CohPal15}
\by Howard~S.~Cohl, Rebekah~M.~Palmer
\paper Fourier and Gegenbauer Expansions for a~Fundamental Solution of~Laplace's Equation in Hyperspherical Geometry
\jour SIGMA
\yr 2015
\vol 11
\papernumber 015
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma996}
\crossref{https://doi.org/10.3842/SIGMA.2015.015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3313691}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350561300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922793691}
Linking options:
  • https://www.mathnet.ru/eng/sigma996
  • https://www.mathnet.ru/eng/sigma/v11/p15
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :51
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024