Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 013, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.013
(Mi sigma994)
 

This article is cited in 2 scientific papers (total in 2 papers)

A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian

Margit Röslera, Michael Voitb

a Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
b Fakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
Full-text PDF (427 kB) Citations (2)
References:
Abstract: We consider compact Grassmann manifolds $G/K$ over the real, complex or quaternionic numbers whose spherical functions are Heckman–Opdam polynomials of type $BC$. From an explicit integral representation of these polynomials we deduce a sharp Mehler–Heine formula, that is an approximation of the Heckman–Opdam polynomials in terms of Bessel functions, with a precise estimate on the error term. This result is used to derive a central limit theorem for random walks on the semi-lattice parametrizing the dual of $G/K$, which are constructed by successive decompositions of tensor powers of spherical representations of $G$. The limit is the distribution of a Laguerre ensemble in random matrix theory. Most results of this paper are established for a larger continuous set of multiplicity parameters beyond the group cases.
Keywords: Mehler–Heine formula; Heckman–Opdam polynomials; Grassmann manifolds; spherical functions; central limit theorem; asymptotic representation theory.
Received: October 14, 2014; in final form February 3, 2015; Published online February 10, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Margit Rösler, Michael Voit, “A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian”, SIGMA, 11 (2015), 013, 18 pp.
Citation in format AMSBIB
\Bibitem{RosVoi15}
\by Margit~R\"osler, Michael~Voit
\paper A Central Limit Theorem for Random Walks on the Dual of a~Compact Grassmannian
\jour SIGMA
\yr 2015
\vol 11
\papernumber 013
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma994}
\crossref{https://doi.org/10.3842/SIGMA.2015.013}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3313689}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350560900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922551515}
Linking options:
  • https://www.mathnet.ru/eng/sigma994
  • https://www.mathnet.ru/eng/sigma/v11/p13
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:976
    Full-text PDF :47
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024