Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 011, 24 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.011
(Mi sigma992)
 

This article is cited in 10 scientific papers (total in 10 papers)

Rank 2 Nichols Algebras of Diagonal Type over Fields of Positive Characteristic

Jing Wang, István Heckenberger

Philipps-Universität Marburg, FB Mathematik und Informatik, Hans-Meerwein-Straße, 35032 Marburg, Germany
References:
Abstract: The paper introduces a new method to determine all rank two Nichols algebras of diagonal type over fields of positive characteristic.
Keywords: Nichols algebra; Cartan graph; Weyl groupoid; root system.
Received: August 1, 2014; in final form February 2, 2015; Published online February 7, 2015
Bibliographic databases:
Document Type: Article
MSC: 16T05
Language: English
Citation: Jing Wang, István Heckenberger, “Rank 2 Nichols Algebras of Diagonal Type over Fields of Positive Characteristic”, SIGMA, 11 (2015), 011, 24 pp.
Citation in format AMSBIB
\Bibitem{WanHec15}
\by Jing~Wang, Istv\'an~Heckenberger
\paper Rank 2 Nichols Algebras of Diagonal Type over Fields of Positive Characteristic
\jour SIGMA
\yr 2015
\vol 11
\papernumber 011
\totalpages 24
\mathnet{http://mi.mathnet.ru/sigma992}
\crossref{https://doi.org/10.3842/SIGMA.2015.011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3313687}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350560500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922566647}
Linking options:
  • https://www.mathnet.ru/eng/sigma992
  • https://www.mathnet.ru/eng/sigma/v11/p11
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :50
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024