|
This article is cited in 2 scientific papers (total in 2 papers)
Pseudo-Exponential-Type Solutions of Wave Equations Depending on Several Variables
Bernd Fritzschea, Bernd Kirsteina, Inna Ya. Roitberga, Alexander L. Sakhnovichb a Fakultät für Mathematik und Informatik, Universität Leipzig, Augustusplatz 10, D-04009 Leipzig, Germany
b Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
Abstract:
Using matrix identities, we construct explicit pseudo-exponential-type solutions of linear Dirac, Loewner and
Schrödinger equations depending on two variables and of nonlinear wave equations depending on three variables.
Keywords:
Bäcklund–Darboux transformation; matrix identity; $S$-node; $S$-multinode; explicit solution; non-stationary Dirac equation; non-stationary Schrödinger equation; Loewner system; pseudo-exponential-type potential; integrable nonlinear equations.
Received: September 4, 2014; in final form January 23, 2015; Published online January 29, 2015
Citation:
Bernd Fritzsche, Bernd Kirstein, Inna Ya. Roitberg, Alexander L. Sakhnovich, “Pseudo-Exponential-Type Solutions of Wave Equations Depending on Several Variables”, SIGMA, 11 (2015), 010, 13 pp.
Linking options:
https://www.mathnet.ru/eng/sigma991 https://www.mathnet.ru/eng/sigma/v11/p10
|
Statistics & downloads: |
Abstract page: | 811 | Full-text PDF : | 53 | References: | 60 |
|