Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 001, 24 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.001
(Mi sigma982)
 

Geometry of Centroaffine Surfaces in $\mathbb{R}^5$

Nathaniel Busheka, Jeanne N. Clellandb

a Department of Mathematics, UNC - Chapel Hill, CB \# 3250, Phillips Hall, Chapel Hill, NC 27599, USA
b Department of Mathematics, 395 UCB, University of Colorado, Boulder, CO 80309-0395, USA
References:
Abstract: We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in $\mathbb{R}^5 \setminus \{0\}$ with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.
Keywords: centroaffine geometry; Cartan's method of moving frames.
Received: August 23, 2014; in final form December 26, 2014; Published online January 6, 2015
Bibliographic databases:
Document Type: Article
MSC: 53A15; 58A15
Language: English
Citation: Nathaniel Bushek, Jeanne N. Clelland, “Geometry of Centroaffine Surfaces in $\mathbb{R}^5$”, SIGMA, 11 (2015), 001, 24 pp.
Citation in format AMSBIB
\Bibitem{BusCle15}
\by Nathaniel~Bushek, Jeanne~N.~Clelland
\paper Geometry of Centroaffine Surfaces in $\mathbb{R}^5$
\jour SIGMA
\yr 2015
\vol 11
\papernumber 001
\totalpages 24
\mathnet{http://mi.mathnet.ru/sigma982}
\crossref{https://doi.org/10.3842/SIGMA.2015.001}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3313677}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350459400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920430235}
Linking options:
  • https://www.mathnet.ru/eng/sigma982
  • https://www.mathnet.ru/eng/sigma/v11/p1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :36
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024