Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 116, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.116
(Mi sigma981)
 

This article is cited in 4 scientific papers (total in 4 papers)

Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras

Marta Mazzocco

Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
Full-text PDF (368 kB) Citations (4)
References:
Abstract: In this paper we introduce a basic representation for the confluent Cherednik algebras $\mathcal H_{\rm V}$, $\mathcal H_{\rm III}$, $\mathcal H_{\rm III}^{D_7}$ and $\mathcal H_{\rm III}^{D_8}$ defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual $q$-Hahn, Al-Salam–Chihara, continuous big $q$-Hermite and continuous $q$-Hermite polynomials.
Keywords: DAHA; Cherednik algebra; $q$-Askey scheme; Askey–Wilson polynomials.
Received: October 31, 2014; in final form December 19, 2014; Published online December 30, 2014
Bibliographic databases:
Document Type: Article
MSC: 33D80; 33D52; 16T99
Language: English
Citation: Marta Mazzocco, “Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras”, SIGMA, 10 (2014), 116, 10 pp.
Citation in format AMSBIB
\Bibitem{Maz14}
\by Marta~Mazzocco
\paper Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras
\jour SIGMA
\yr 2014
\vol 10
\papernumber 116
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma981}
\crossref{https://doi.org/10.3842/SIGMA.2014.116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3298984}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348069600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920091588}
Linking options:
  • https://www.mathnet.ru/eng/sigma981
  • https://www.mathnet.ru/eng/sigma/v10/p116
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :46
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024