Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 114, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.114
(Mi sigma979)
 

This article is cited in 2 scientific papers (total in 2 papers)

Periodic Vortex Streets and Complex Monodromy

Adrian D. Hemerya, Alexander P. Veselovbc

a Charterhouse School, Godalming, Surrey, GU7 2DX, UK
b Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
c Moscow State University, Russia
References:
Abstract: The explicit constructions of periodic and doubly periodic vortex relative equilibria using the theory of monodromy-free Schrödinger operators are described. Several concrete examples with the qualitative analysis of the corresponding travelling vortex streets are given.
Keywords: vortex; equilibria; monodromy; integrability.
Received: August 28, 2014; in final form December 10, 2014; Published online December 23, 2014
Bibliographic databases:
Document Type: Article
MSC: 76B47; 34M05; 81R12
Language: English
Citation: Adrian D. Hemery, Alexander P. Veselov, “Periodic Vortex Streets and Complex Monodromy”, SIGMA, 10 (2014), 114, 18 pp.
Citation in format AMSBIB
\Bibitem{HemVes14}
\by Adrian~D.~Hemery, Alexander~P.~Veselov
\paper Periodic Vortex Streets and Complex Monodromy
\jour SIGMA
\yr 2014
\vol 10
\papernumber 114
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma979}
\crossref{https://doi.org/10.3842/SIGMA.2014.114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348069400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919662511}
Linking options:
  • https://www.mathnet.ru/eng/sigma979
  • https://www.mathnet.ru/eng/sigma/v10/p114
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:310
    Full-text PDF :93
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024