Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 113, 28 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.113
(Mi sigma978)
 

This article is cited in 9 scientific papers (total in 9 papers)

Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One

Maarten Van Pruijssena, Pablo Románb

a Universität Paderborn, Institut für Mathematik, Warburger Str. 100, 33098 Paderborn, Germany
b CIEM, FaMAF, Universidad Nacional de Córdoba, Medina Allende s/n Ciudad Universitaria, Córdoba, Argentina
Full-text PDF (593 kB) Citations (9)
References:
Abstract: We present a method to obtain infinitely many examples of pairs $(W,D)$ consisting of a matrix weight $W$ in one variable and a symmetric second-order differential operator $D$. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs $(G,K)$ of rank one and a suitable irreducible $K$-representation. The heart of the construction is the existence of a suitable base change $\Psi_{0}$. We analyze the base change and derive several properties. The most important one is that $\Psi_{0}$ satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group $G$ as soon as we have an explicit expression for $\Psi_{0}$. The weight $W$ is also determined by $\Psi_{0}$. We provide an algorithm to calculate $\Psi_{0}$ explicitly. For the pair $(\mathrm{USp}(2n),\mathrm{USp}(2n-2)\times\mathrm{USp}(2))$ we have implemented the algorithm in GAP so that individual pairs $(W,D)$ can be calculated explicitly. Finally we classify the Gelfand pairs $(G,K)$ and the $K$-representations that yield pairs $(W,D)$ of size $2\times2$ and we provide explicit expressions for most of these cases.
Keywords: matrix valued classical pairs; multiplicity free branching.
Received: April 30, 2014; in final form December 12, 2014; Published online December 20, 2014
Bibliographic databases:
Document Type: Article
MSC: 22E46; 33C47
Language: English
Citation: Maarten Van Pruijssen, Pablo Román, “Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One”, SIGMA, 10 (2014), 113, 28 pp.
Citation in format AMSBIB
\Bibitem{VanRom14}
\by Maarten~Van Pruijssen, Pablo~Rom\'an
\paper Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of~Rank~One
\jour SIGMA
\yr 2014
\vol 10
\papernumber 113
\totalpages 28
\mathnet{http://mi.mathnet.ru/sigma978}
\crossref{https://doi.org/10.3842/SIGMA.2014.113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348069100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919675728}
Linking options:
  • https://www.mathnet.ru/eng/sigma978
  • https://www.mathnet.ru/eng/sigma/v10/p113
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024