Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 078, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.078
(Mi sigma943)
 

This article is cited in 4 scientific papers (total in 4 papers)

Some Noncommutative Matrix Algebras Arising in the Bispectral Problem

F. Alberto Grünbaum

Department of Mathematics, University of California, Berkeley, CA 94720 USA
Full-text PDF (296 kB) Citations (4)
References:
Abstract: I revisit the so called “bispectral problem” introduced in a joint paper with Hans Duistermaat a long time ago, allowing now for the differential operators to have matrix coefficients and for the eigenfunctions, and one of the eigenvalues, to be matrix valued too. In the last example we go beyond this and allow both eigenvalues to be matrix valued.
Keywords: noncommutative algebras; bispectral problem.
Received: May 1, 2014; in final form July 17, 2014; Published online July 24, 2014
Bibliographic databases:
Document Type: Article
MSC: 13N10; 16S32; 35P05
Language: English
Citation: F. Alberto Grünbaum, “Some Noncommutative Matrix Algebras Arising in the Bispectral Problem”, SIGMA, 10 (2014), 078, 9 pp.
Citation in format AMSBIB
\Bibitem{Gru14}
\by F.~Alberto~Gr\"unbaum
\paper Some Noncommutative Matrix Algebras Arising in the Bispectral Problem
\jour SIGMA
\yr 2014
\vol 10
\papernumber 078
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma943}
\crossref{https://doi.org/10.3842/SIGMA.2014.078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339447900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905013448}
Linking options:
  • https://www.mathnet.ru/eng/sigma943
  • https://www.mathnet.ru/eng/sigma/v10/p78
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024