Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 076, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.076
(Mi sigma941)
 

This article is cited in 6 scientific papers (total in 6 papers)

Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles

Debashish Goswami, Soumalya Joardar

Indian Statistical Institute, 203, B.T. Road, Kolkata 700108, India
Full-text PDF (419 kB) Citations (6)
References:
Abstract: It is proved that the (volume and orientation-preserving) quantum isometry group of a spectral triple obtained by deformation by some dual unitary 2-cocycle is isomorphic with a similar twist-deformation of the quantum isometry group of the original (undeformed) spectral triple. This result generalizes similar work by Bhowmick and Goswami for Rieffel-deformed spectral triples in [Comm. Math. Phys. 285 (2009), 421–444].
Keywords: cocycle twist; quantum isometry group; Rieffel deformation; spectral triple.
Received: January 29, 2014; in final form July 11, 2014; Published online July 17, 2014
Bibliographic databases:
Document Type: Article
MSC: 58B34; 46L65; 81R50
Language: English
Citation: Debashish Goswami, Soumalya Joardar, “Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles”, SIGMA, 10 (2014), 076, 18 pp.
Citation in format AMSBIB
\Bibitem{GosJoa14}
\by Debashish~Goswami, Soumalya~Joardar
\paper Quantum Isometry Groups of Noncommutative Manifolds Obtained by~Deformation Using Dual Unitary 2-Cocycles
\jour SIGMA
\yr 2014
\vol 10
\papernumber 076
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma941}
\crossref{https://doi.org/10.3842/SIGMA.2014.076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339447700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904437259}
Linking options:
  • https://www.mathnet.ru/eng/sigma941
  • https://www.mathnet.ru/eng/sigma/v10/p76
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024