Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 066, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.066
(Mi sigma94)
 

This article is cited in 25 scientific papers (total in 25 papers)

Quantum Entanglement and Projective Ring Geometry

Michel Planata, Metod Sanigab, Maurice R. Kiblercde

a Institut FEMTO-ST, CNRS/Université de Franche-Comté, Département LPMO, 32 Avenue de l'Observatoire, F-25044 Besançon Cedex, France
b Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
c CNRS/IN2P3, 43 bd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
d Institut de Physique Nucléaire de Lyon, IN2P3-CNRS/Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
e Université de Lyon, Institut de Physique Nucléaire
References:
Abstract: The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the $15 \times 15$ multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed geometrical structure that can be regarded as three pencils of lines in the projective plane of order two. In one of the pencils, which we call the kernel, the observables on two lines share a base of Bell states. In the complement of the kernel, the eight vertices/observables are joined by twelve lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the nature of this geometry has much to do with the structure of the projective lines defined over the rings that are the direct product of $n$ copies of the Galois field $GF(2)$, with $n=2,3$ and 4.
Keywords: quantum entanglement; two spin-$\frac12$ particles; finite rings; projective ring lines.
Received: June 13, 2006; in final form August 16, 2006; Published online August 17, 2006
Bibliographic databases:
Document Type: Article
Language: English
Citation: Michel Planat, Metod Saniga, Maurice R. Kibler, “Quantum Entanglement and Projective Ring Geometry”, SIGMA, 2 (2006), 066, 14 pp.
Citation in format AMSBIB
\Bibitem{PlaSanKib06}
\by Michel Planat, Metod Saniga, Maurice R.~Kibler
\paper Quantum Entanglement and Projective Ring Geometry
\jour SIGMA
\yr 2006
\vol 2
\papernumber 066
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma94}
\crossref{https://doi.org/10.3842/SIGMA.2006.066}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2240739}
\zmath{https://zbmath.org/?q=an:1134.81319}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100065}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889235307}
Linking options:
  • https://www.mathnet.ru/eng/sigma94
  • https://www.mathnet.ru/eng/sigma/v2/p66
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :50
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024