Processing math: 100%
Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 066, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.066
(Mi sigma94)
 

This article is cited in 25 scientific papers (total in 25 papers)

Quantum Entanglement and Projective Ring Geometry

Michel Planata, Metod Sanigab, Maurice R. Kiblercde

a Institut FEMTO-ST, CNRS/Université de Franche-Comté, Département LPMO, 32 Avenue de l'Observatoire, F-25044 Besançon Cedex, France
b Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
c CNRS/IN2P3, 43 bd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
d Institut de Physique Nucléaire de Lyon, IN2P3-CNRS/Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
e Université de Lyon, Institut de Physique Nucléaire
References:
Abstract: The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 15×15 multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed geometrical structure that can be regarded as three pencils of lines in the projective plane of order two. In one of the pencils, which we call the kernel, the observables on two lines share a base of Bell states. In the complement of the kernel, the eight vertices/observables are joined by twelve lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the nature of this geometry has much to do with the structure of the projective lines defined over the rings that are the direct product of n copies of the Galois field GF(2), with n=2,3 and 4.
Keywords: quantum entanglement; two spin-12 particles; finite rings; projective ring lines.
Received: June 13, 2006; in final form August 16, 2006; Published online August 17, 2006
Bibliographic databases:
Document Type: Article
Language: English
Citation: Michel Planat, Metod Saniga, Maurice R. Kibler, “Quantum Entanglement and Projective Ring Geometry”, SIGMA, 2 (2006), 066, 14 pp.
Citation in format AMSBIB
\Bibitem{PlaSanKib06}
\by Michel Planat, Metod Saniga, Maurice R.~Kibler
\paper Quantum Entanglement and Projective Ring Geometry
\jour SIGMA
\yr 2006
\vol 2
\papernumber 066
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma94}
\crossref{https://doi.org/10.3842/SIGMA.2006.066}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2240739}
\zmath{https://zbmath.org/?q=an:1134.81319}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100065}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889235307}
Linking options:
  • https://www.mathnet.ru/eng/sigma94
  • https://www.mathnet.ru/eng/sigma/v2/p66
  • This publication is cited in the following 25 articles:
    1. Abdallah Slaoui, Brahim Amghar, Rachid Ahl Laamara, “Interferometric phase estimation and quantum resource dynamics in Bell coherent-state superpositions generated via a unitary beam splitter”, J. Opt. Soc. Am. B, 40:8 (2023), 2013  crossref
    2. Vourdas A., “Finite Geometries and Mutually Unbiased Bases”: Vourdas, A, Finite and Profinite Quantum Systems, Quantum Science and Technology-Series, Springer-Verlag Berlin, 2017, 57–76  crossref  mathscinet  isi
    3. Keppens D., “Affine Planes Over Finite Rings, a Summary”, Aequ. Math., 91:5 (2017), 979–993  crossref  mathscinet  zmath  isi  scopus
    4. Olupitan T., Lei C., Vourdas A., “An analytic function approach to weak mutually unbiased bases”, Ann. Phys., 371 (2016), 1–19  crossref  mathscinet  zmath  isi  scopus
    5. Oladejo S.O., Lei C., Vourdas A., “Partial Ordering of Weak Mutually Unbiased Bases”, J. Phys. A-Math. Theor., 47:48 (2014), 485204  crossref  mathscinet  zmath  isi  scopus
    6. Green R.M. Saniga M., “The Veldkamp Space of the Smallest Slim Dense Near Hexagon”, Int. J. Geom. Methods Mod. Phys., 10:2 (2013), 1250082  crossref  mathscinet  zmath  isi  scopus
    7. Shalaby M., Vourdas A., “Weak mutually unbiased bases”, Journal of Physics A-Mathematical and Theoretical, 45:5 (2012), 052001  crossref  mathscinet  zmath  adsnasa  isi  scopus
    8. Planat M., “Multipartite Entanglement Arising From Dense Euclidean Lattices in Dimensions 4-24”, Phys. Scr., T147 (2012), 014025  crossref  adsnasa  isi  scopus
    9. Shalaby M., Vourdas A., “Tomographically complete sets of orthonormal bases in finite systems”, Journal of Physics A-Mathematical and Theoretical, 44:34 (2011), 345303  crossref  mathscinet  zmath  isi  scopus
    10. Kibler M.R., “Bases for spin systems and qudits from angular momentum theory”, Communications in Nonlinear Science and Numerical Simulation, 15:3 (2010), 752–763  crossref  mathscinet  zmath  adsnasa  isi  scopus
    11. Kibler, MR, “An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group”, Journal of Physics A-Mathematical and Theoretical, 42:35 (2009), 353001  crossref  mathscinet  zmath  isi  scopus
    12. Hans Havlicek, Boris Odehnal, Metod Saniga, “Factor-Group-Generated Polar Spaces and (Multi-)Qudits”, SIGMA, 5 (2009), 096, 15 pp.  mathnet  crossref  mathscinet
    13. Kibler M.R., “Bases for Spin Systems and Qudits”, Proceedings of the Physics Conference TIM-08, AIP Conference Proceedings, 1131, 2009, 3–10  crossref  adsnasa  isi  scopus
    14. M. Saniga, M. Planat, P. Pracna, “Projective ring line encompassing two-qubits”, Theoret. and Math. Phys., 155:3 (2008), 905–913  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. Metod Saniga, Hans Havlicek, Michel Planat, Petr Pracna, “Twin “Fano-Snowflakes” over the Smallest Ring of Ternions”, SIGMA, 4 (2008), 050, 7 pp.  mathnet  crossref  mathscinet  zmath
    16. Kibler, MR, “GENERALIZED SPIN BASES FOR QUANTUM CHEMISTRY AND QUANTUM INFORMATION”, Collection of Czechoslovak Chemical Communications, 73:10 (2008), 1281  crossref  isi  scopus
    17. Kibler, MR, “Variations on a theme of Heisenberg, Pauli and Weyl”, Journal of Physics A-Mathematical and Theoretical, 41:37 (2008), 375302  crossref  mathscinet  zmath  isi  scopus
    18. Planat, M, “Group theory for quantum gates and quantum coherence”, Journal of Physics A-Mathematical and Theoretical, 41:18 (2008), 182001  crossref  mathscinet  zmath  isi  scopus
    19. Planat, M, “Multi-line geometry of qubit-qutrit and higher-order Pauli operators”, International Journal of Theoretical Physics, 47:4 (2008), 1127  crossref  mathscinet  zmath  adsnasa  isi  scopus
    20. Planat M., Saniga M., “On the Pauli graphs on N-qudits”, Quantum Information & Computation, 8:1–2 (2008), 127–146  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :60
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025