Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 072, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.072
(Mi sigma937)
 

This article is cited in 1 scientific paper (total in 1 paper)

The GraviGUT Algebra Is not a Subalgebra of $E_8$, but $E_8$ Does Contain an Extended GraviGUT Algebra

Andrew Douglasab, Joe Repkac

a CUNY Graduate Center, City University of New York, USA
b New York City College of Technology, City University of New York, USA
c Department of Mathematics, University of Toronto, Canada
Full-text PDF (359 kB) Citations (1)
References:
Abstract: The (real) GraviGUT algebra is an extension of the $\mathfrak{spin}(11,3)$ algebra by a $64$-dimensional Lie algebra, but there is some ambiguity in the literature about its definition. Recently, Lisi constructed an embedding of the GraviGUT algebra into the quaternionic real form of $E_8$. We clarify the definition, showing that there is only one possibility, and then prove that the GraviGUT algebra cannot be embedded into any real form of $E_8$. We then modify Lisi's construction to create true Lie algebra embeddings of the extended GraviGUT algebra into $E_8$. We classify these embeddings up to inner automorphism.
Keywords: exceptional Lie algebra $E_8$; GraviGUT algebra; extended GraviGUT algebra; Lie algebra embeddings.
Received: April 4, 2014; in final form July 3, 2014; Published online July 8, 2014
Bibliographic databases:
Document Type: Article
Language: English
Citation: Andrew Douglas, Joe Repka, “The GraviGUT Algebra Is not a Subalgebra of $E_8$, but $E_8$ Does Contain an Extended GraviGUT Algebra”, SIGMA, 10 (2014), 072, 10 pp.
Citation in format AMSBIB
\Bibitem{DouRep14}
\by Andrew~Douglas, Joe~Repka
\paper The GraviGUT Algebra Is not a~Subalgebra of $E_8$, but $E_8$ Does Contain an Extended GraviGUT Algebra
\jour SIGMA
\yr 2014
\vol 10
\papernumber 072
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma937}
\crossref{https://doi.org/10.3842/SIGMA.2014.072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339447200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904063435}
Linking options:
  • https://www.mathnet.ru/eng/sigma937
  • https://www.mathnet.ru/eng/sigma/v10/p72
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :40
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024