Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 064, 46 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.064
(Mi sigma929)
 

This article is cited in 6 scientific papers (total in 6 papers)

Non-Commutative Resistance Networks

Marc A. Rieffel

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA
Full-text PDF (627 kB) Citations (6)
References:
Abstract: In the setting of finite-dimensional $C^*$-algebras ${\mathcal A}$ we define what we call a Riemannian metric for ${\mathcal A}$, which when ${\mathcal A}$ is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation.
Keywords: resistance network; Riemannian metric; Dirichlet form; Markov; Leibniz seminorm; Laplace operator; resistance distance; standard deviation.
Received: January 22, 2014; in final form June 10, 2014; Published online June 14, 2014
Bibliographic databases:
Document Type: Article
MSC: 46L87; 46L57; 58B34
Language: English
Citation: Marc A. Rieffel, “Non-Commutative Resistance Networks”, SIGMA, 10 (2014), 064, 46 pp.
Citation in format AMSBIB
\Bibitem{Rie14}
\by Marc~A.~Rieffel
\paper Non-Commutative Resistance Networks
\jour SIGMA
\yr 2014
\vol 10
\papernumber 064
\totalpages 46
\mathnet{http://mi.mathnet.ru/sigma929}
\crossref{https://doi.org/10.3842/SIGMA.2014.064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3226986}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338299500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903543544}
Linking options:
  • https://www.mathnet.ru/eng/sigma929
  • https://www.mathnet.ru/eng/sigma/v10/p64
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:164
    Full-text PDF :32
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024