Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 052, 26 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.052
(Mi sigma917)
 

This article is cited in 21 scientific papers (total in 21 papers)

Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes

Ángel Ballesterosa, Francisco J. Herranza, Catherine Meusburgerb, Pedro Naranjoa

a Departamento de Física, Universidad de Burgos, E-09001 Burgos, Spain
b Department Mathematik, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 11, D-91058 Erlangen, Germany
References:
Abstract: We construct the full quantum algebra, the corresponding Poisson–Lie structure and the associated quantum spacetime for a family of quantum deformations of the isometry algebras of the (2+1)-dimensional anti-de Sitter (AdS), de Sitter (dS) and Minkowski spaces. These deformations correspond to a Drinfel'd double structure on the isometry algebras that are motivated by their role in (2+1)-gravity. The construction includes the cosmological constant Λ as a deformation parameter, which allows one to treat these cases in a common framework and to obtain a twisted version of both space- and time-like κ-AdS and dS quantum algebras; their flat limit Λ0 leads to a twisted quantum Poincaré algebra. The resulting non-commutative spacetime is a nonlinear Λ-deformation of the κ-Minkowski one plus an additional contribution generated by the twist. For the AdS case, we relate this quantum deformation to two copies of the standard (Drinfel'd–Jimbo) quantum deformation of the Lorentz group in three dimensions, which allows one to determine the impact of the twist.
Keywords: (2+1)-gravity; deformation; non-commutative spacetime; anti-de Sitter; cosmological constant; quantum groups; Poisson–Lie groups; contraction.
Received: March 9, 2014; in final form May 13, 2014; Published online May 18, 2014
Bibliographic databases:
Document Type: Article
MSC: 16T20; 81R50; 81R60
Language: English
Citation: Ángel Ballesteros, Francisco J. Herranz, Catherine Meusburger, Pedro Naranjo, “Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes”, SIGMA, 10 (2014), 052, 26 pp.
Citation in format AMSBIB
\Bibitem{BalHerMeu14}
\by \'Angel~Ballesteros, Francisco~J.~Herranz, Catherine~Meusburger, Pedro~Naranjo
\paper Twisted (2+1) $\kappa$-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes
\jour SIGMA
\yr 2014
\vol 10
\papernumber 052
\totalpages 26
\mathnet{http://mi.mathnet.ru/sigma917}
\crossref{https://doi.org/10.3842/SIGMA.2014.052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210583}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000336090900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84901295010}
Linking options:
  • https://www.mathnet.ru/eng/sigma917
  • https://www.mathnet.ru/eng/sigma/v10/p52
  • This publication is cited in the following 21 articles:
    1. G. Amelino-Camelia, D. Frattulillo, G. Gubitosi, G. Rosati, S. Bedić, “Phenomenology of DSR-relativistic in-vacuo dispersion in FLRW spacetime”, J. Cosmol. Astropart. Phys., 2024:01 (2024), 070  crossref
    2. Ballesteros A., Gutierrez-Sagredo I., Herranz F.J., “Noncommutative (a)Ds and Minkowski Spacetimes From Quantum Lorentz Subgroups”, Class. Quantum Gravity, 39:1 (2022), 015018  crossref  mathscinet  isi
    3. Ciccoli N., “Quantum Orbit Method in the Presence of Symmetries”, Symmetry-Basel, 13:4 (2021), 724  crossref  isi
    4. Gutierrez-Sagredo I., Herranz F.J., “Cayley-Klein Lie Bialgebras: Noncommutative Spaces, Drinfel'D Doubles and Kinematical Applications”, Symmetry-Basel, 13:7 (2021), 1249  crossref  isi  scopus
    5. J. Kowalski-Glikman, J. Lukierski, T. Trzesniewski, “Quantum D=3 euclidean and poincare symmetries from contraction limits”, J. High Energy Phys., 2020, no. 9, 096  crossref  mathscinet  isi  scopus
    6. A. Addazi, A. Marciano, “Conformal bootstrap in ds/cft and topological quantum gravity”, Int. J. Geom. Methods Mod. Phys., 17:1 (2020), 2050007  crossref  mathscinet  isi
    7. J. Lukierski, S. Meljanac, M. Woronowicz, “Quantum twist-deformed D=4 phase spaces with spin sector and Hopf algebroid structures”, Phys. Lett. B, 789 (2019), 82–87  crossref  mathscinet  zmath  isi  scopus
    8. A. Ballesteros, I. Gutierrez-Sagredo, F. J. Herranz, “The Poincare group as a Drinfel'd double”, Class. Quantum Gravity, 36:2 (2019), 025003  crossref  mathscinet  isi  scopus
    9. A. Ballesteros, I. Gutierrez-Sagredo, F. J. Herranz, “The kappa-(a)ds noncommutative spacetime”, Phys. Lett. B, 796 (2019), 93–101  crossref  mathscinet  isi  scopus
    10. I. Gutierrez-Sagredo, A. Ballesteros, F. J. Herranz, “Drinfel'd double structures for Poincare and euclidean groups”, 32Nd International Colloquium on Group Theoretical Methods in Physics (Group32), Journal of Physics Conference Series, 1194, IOP Publishing Ltd, 2019, 012041  crossref  mathscinet  isi
    11. A. Ballesteros, G. Gubitosi, I. Gutierrez-Sagredo, F. J. Herranz, “Curved momentum spaces from quantum (anti-)de Sitter groups in (3+1) dimensions”, Phys. Rev. D, 97:10 (2018), 106024  crossref  mathscinet  isi
    12. A. Ballesteros, F. Mercati, “Extended noncommutative Minkowski spacetimes and hybrid gauge symmetries”, Eur. Phys. J. C, 78:8 (2018), 615  crossref  isi  scopus
    13. Rita Fioresi, Emanuele Latini, Alessio Marrani, “Quantum Klein Space and Superspace”, SIGMA, 14 (2018), 066, 20 pp.  mathnet  crossref
    14. A. Ballesteros, F. J. Herranz, F. Musso, P. Naranjo, “The κ-(A)dS quantum algebra in (3+1) dimensions”, Phys. Lett. B, 766 (2017), 205–211  crossref  isi  scopus
    15. A. Ballesteros, N. R. Bruno, F. J. Herranz, “Noncommutative relativistic spacetimes and worldlines from 2+1 quantum (anti-)de Sitter groups”, Adv. High. Energy Phys., 2017, 7876942  crossref  mathscinet  zmath  isi
    16. A. Ballesteros, C. Meusburger, P. Naranjo, “AdS Poisson homogeneous spaces and Drinfel'd doubles”, J. Phys. A-Math. Theor., 50:39 (2017), 395202  crossref  mathscinet  zmath  isi
    17. G. Rosati, “Kappa-de Sitter and kappa-Poincaré symmetries emerging from Chern–Simons (2+1)D gravity with a cosmological constant”, Phys. Rev. D, 96:6 (2017), 066027  crossref  mathscinet  isi
    18. A. Ballesteros, I. Gutierrez-Sagredo, F. J. Herranz, C. Meusburger, P. Naranjo, “Quantum groups and noncommutative spacetimes with cosmological constant”, 8th International Workshop DICE 2016: Spacetime–Matter–Quantum Mechanics, Journal of Physics Conference Series, 880, IOP Publishing Ltd, 2017, 012023  crossref  isi
    19. Ballesteros A., Herranz F.J., Naranjo P., “Towards (3+1) Gravity Through Drinfel'D Doubles With Cosmological Constant”, Phys. Lett. B, 746 (2015), 37–43  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    20. Andrzej Borowiec, Anna Pachoł, “κ-Deformations and Extended κ-Minkowski Spacetimes”, SIGMA, 10 (2014), 107, 24 pp.  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:677
    Full-text PDF :35
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025