Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 049, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.049
(Mi sigma914)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Classification of All Crossed Products $H_4 \# k[C_{n}]$

Ana-Loredana Agoreab, Costel-Gabriel Bonteaac, Gigel Militaruc

a Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
b Department of Applied Mathematics, Bucharest University of Economic Studies, Piata Romana 6, RO-010374 Bucharest 1, Romania
c Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, RO-010014 Bucharest 1, Romania
Full-text PDF (414 kB) Citations (1)
References:
Abstract: Using the computational approach introduced in [Agore A.L., Bontea C.G., Militaru G., J. Algebra Appl. 12 (2013), 1250227, 24 pages] we classify all coalgebra split extensions of $H_4$ by $k[C_n]$, where $C_n$ is the cyclic group of order $n$ and $H_4$ is Sweedler's $4$-dimensional Hopf algebra. Equivalently, we classify all crossed products of Hopf algebras $H_4 \# k[C_{n}]$ by explicitly computing two classifying objects: the cohomological ‘group’ ${\mathcal H}^{2} ( k[C_{n}], H_4)$ and $\mathrm{Crp} ( k[C_{n}], H_4):=$ the set of types of isomorphisms of all crossed products $H_4 \# k[C_{n}]$. More precisely, all crossed products $H_4 \# k[C_n]$ are described by generators and relations and classified: they are $4n$-dimensional quantum groups $H_{4n, \lambda, t}$, parameterized by the set of all pairs $(\lambda, t)$ consisting of an arbitrary unitary map $t : C_n \to C_2$ and an $n$-th root $\lambda$ of $\pm 1$. As an application, the group of Hopf algebra automorphisms of $H_{4n, \lambda, t}$ is explicitly described.
Keywords: crossed product of Hopf algebras; split extension of Hopf algebras.
Received: November 18, 2013; in final form April 18, 2014; Published online April 23, 2014
Bibliographic databases:
Document Type: Article
MSC: 16T10; 16T05; 16S40
Language: English
Citation: Ana-Loredana Agore, Costel-Gabriel Bontea, Gigel Militaru, “The Classification of All Crossed Products $H_4 \# k[C_{n}]$”, SIGMA, 10 (2014), 049, 12 pp.
Citation in format AMSBIB
\Bibitem{AgoBonMil14}
\by Ana-Loredana~Agore, Costel-Gabriel~Bontea, Gigel~Militaru
\paper The Classification of All Crossed Products $H_4 \# k[C_{n}]$
\jour SIGMA
\yr 2014
\vol 10
\papernumber 049
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma914}
\crossref{https://doi.org/10.3842/SIGMA.2014.049}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210586}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334735900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899618778}
Linking options:
  • https://www.mathnet.ru/eng/sigma914
  • https://www.mathnet.ru/eng/sigma/v10/p49
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :47
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025