Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 047, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.047
(Mi sigma912)
 

This article is cited in 11 scientific papers (total in 11 papers)

Graded Limits of Minimal Affinizations in Type $D$

Katsuyuki Naoi

Institute of Engineering, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo, Japan
References:
Abstract: We study the graded limits of minimal affinizations over a quantum loop algebra of type $D$ in the regular case. We show that the graded limits are isomorphic to multiple generalizations of Demazure modules, and also give their defining relations. As a corollary we obtain a character formula for the minimal affinizations in terms of Demazure operators, and a multiplicity formula for a special class of the minimal affinizations.
Keywords: minimal affinizations; quantum affine algebras; current algebras.
Received: October 30, 2013; in final form April 14, 2014; Published online April 20, 2014
Bibliographic databases:
Document Type: Article
MSC: 17B37; 17B10
Language: English
Citation: Katsuyuki Naoi, “Graded Limits of Minimal Affinizations in Type $D$”, SIGMA, 10 (2014), 047, 20 pp.
Citation in format AMSBIB
\Bibitem{Nao14}
\by Katsuyuki~Naoi
\paper Graded Limits of Minimal Affinizations in Type $D$
\jour SIGMA
\yr 2014
\vol 10
\papernumber 047
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma912}
\crossref{https://doi.org/10.3842/SIGMA.2014.047}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210588}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334735500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899135746}
Linking options:
  • https://www.mathnet.ru/eng/sigma912
  • https://www.mathnet.ru/eng/sigma/v10/p47
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025